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PURPOSE. To determine plasma metabolite and metabolic pathway differences between
patients with type 2 diabetes with diabetic retinopathy (DR) and without retinopathy
(diabetic controls), and between patients with proliferative DR (PDR) and nonproliferative
DR (NPDR).

METHODS. Using high-resolution mass spectrometry with liquid chromatography, untargeted
metabolomics was performed on plasma samples from 83 DR patients and 90 diabetic
controls. Discriminatory metabolic features were identified through partial least squares
discriminant analysis, and linear regression was used to adjust for age, sex, diabetes duration,
and hemoglobin A1c. Pathway analysis was performed using Mummichog 2.0.

RESULTS. In the adjusted analysis, 126 metabolic features differed significantly between DR
patients and diabetic controls. Pathway analysis revealed alterations in the metabolism of
amino acids, leukotrienes, niacin, pyrimidine, and purine. Arginine, citrulline, glutamic c-
semialdehyde, and dehydroxycarnitine were key contributors to these pathway differences. A
total of 151 features distinguished PDR patients from NPDR patients, and pathway analysis
revealed alterations in the b-oxidation of saturated fatty acids, fatty acid metabolism, and
vitamin D3 metabolism. Carnitine was a major contributor to the pathway differences.

CONCLUSIONS. This study demonstrates that arginine and citrulline-related pathways are
dysregulated in DR, and fatty acid metabolism is altered in PDR patients compared with NPDR
patients.
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Diabetic retinopathy (DR) is the leading cause of blindness
in working-age adults, affecting approximately 93 million

people worldwide.1 Its prevalence will likely increase as the

global population with diabetes is projected to rise by 55% from
2013 to 2035.2 Vision impairment resulting from DR is a
debilitating disease associated with lost independence and
reduced quality of life.3 Current treatment options for DR,
including laser photocoagulation and intravitreal injections, are

both costly and invasive.

Clinically, DR is classified into two major stages, non-
proliferative (NPDR) and proliferative diabetic retinopathy
(PDR). NPDR is characterized by retinal microaneurysms and
hemorrhages and may progress to PDR, which is defined by
retinal neovascularization with the potential for severe vision

loss.4 The strongest risk factors for DR include poor glycemic
control and longer duration of diabetes. Some studies have
suggested that hypertension and hyperlipidemia may also play a
role.5 Maintaining adequate glycemic control is difficult,
requiring rigorous dietary restrictions and precise medication

management. Furthermore, strict glycemic control does not
prevent the development of DR in all patients,6 and the causes
of this clinical heterogeneity are not well understood.

Given the limited treatment options and incomplete
understanding of DR pathogenesis, further studies are essential
to optimize patient care. Metabolomics, the study of small

molecules present in a biological sample, has the potential to
uncover metabolic changes that distinguish healthy and disease
states. Liquid chromatography coupled with high-resolution
mass spectrometry (LC-MS) is a technique that can measure
thousands of metabolites in biological fluids or tissues.7 We

have previously used this approach to identify metabolites and
metabolic pathways altered in neovascular AMD (NVAMD)8,9

and POAG.10 Metabolomics studies have identified changes in
the pentose phosphate, arginine to proline, and ascorbic acid
pathways, as well as altered plasma levels of glutamine and

glutamate in patients with DR.11–14 However, many of these
studies were limited by sample size, and none investigated
differences between NPDR and PDR patients.

In this study, we performed untargeted metabolomics via LC-
MS in plasma of patients with type 2 diabetes mellitus with and
without DR. The goal was to identify metabolites or metabolic

pathways altered in DR, as well as metabolic differences
between patients with NPDR and PDR. Determining differenc-
es in these metabolic profiles could reveal molecular mecha-
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nisms of DR and PDR, facilitating the identification of new
therapeutic targets.

METHODS

Ethics Statement

This clinical case-control study was approved by the Vanderbilt
University Human Research Protection Program. Research
adhered to the tenets of the Declaration of Helsinki and was
conducted in accordance with Health Insurance Portability and
Accountability Act regulations. Written informed consent was
obtained from all participants prior to study enrollment.

Study Participants

A total of 173 patients were recruited from the Retina Service
of the Vanderbilt Eye Institute. All patients enrolled had a
diagnosis of type 2 diabetes made by their primary care
provider or endocrinologist and had been prescribed at least
one diabetes medication. The diabetic controls (n ¼ 90)
included patients with a diagnosis of type 2 diabetes for at least
5 years and no clinical signs of DR as determined by dilated
fundus examination by a retina specialist. DR cases (n ¼ 83)
were patients with type 2 diabetes and DR diagnosed on
dilated fundus examination by a retina specialist. Presence of
DR was confirmed and documented by color fundus photog-
raphy (Zeiss 450þ fundus camera; Carl Zeiss Meditec, Dublin,
CA, USA), and classified as NPDR or PDR. A diagnosis of NPDR
was based on the presence of blot hemorrhages, microaneu-
rysms, cotton-wool spots, or intraretinal microvascular abnor-
malities and no evidence of active PDR or history of treatment
for PDR. A PDR diagnosis was based on the presence of
neovascularization of the iris or retina or clinical evidence or
documentation of treatment for PDR. Exclusion criteria for
both cases and controls included nondiabetic retinopathy or
retinal degeneration, glaucoma, and active ocular inflamma-
tion.

After obtaining written, informed consent, blood was
drawn from each participant using a 21- or 23-G butterfly
needle into 3-mL blood collection tubes containing 56 USP
units of lithium heparin. These tubes were centrifuged for 10
minutes at 48C for blood fractionation, and plasma was
subsequently aliquoted in 1.5-mL conical tubes and immedi-
ately stored at �808C.

At the time of the blood draw, patients were asked a
standardized set of questions about disease history. Past
medical history, comorbidity data, creatinine values, and
hemoglobin A1c (HbA1c) measurements were obtained from
each participant’s electronic medical record (taken from the
date closest to blood draw). Diagnoses of hypertension,
coronary artery disease, and dyslipidemia were based on
clinical notes from the primary care physician or cardiologist.

High-Resolution Untargeted Metabolomics
Analysis

Plasma samples were thawed and analyzed by LC-MS at Emory
University as previously described.8–10,15,16 Samples were
randomized into batches of 20 prior to analysis. Pooled
reference plasma was run prior to and after each batch for
quality control and assurance. Plasma sample aliquots (65 lL)
were treated with 130 lL acetonitrile (2:1 vol/vol) containing
3.5 lL of an internal isotopic standard mix,10,15,17 placed on ice
for 30 minutes, and centrifuged for 10 minutes (16,100g at 48C)
to remove protein. The supernatants were loaded onto a
Shimadzu autosampler maintained at 48C and analyzed in

triplicate using a Thermo LTQ Velos Orbitrap (Thermo
Scientific, San Jose, CA, USA) and C18 column chromatogra-
phy. Elution was obtained with a formic acid/acetonitrile
gradient at a flow rate of 0.35 mL/min for the initial 6 minutes
and 0.5 mL/min for the remaining 4 minutes. The first 2-minute
period consisted of 5% solution A (2% [vol/vol] formic acid in
water), 60% water, 35% acetonitrile, and the final 4-minute
period was maintained at 5% solution A, 95% acetonitrile. The
mass spectrometer was set to collect mass-to-charge ratio (m/

z) from 85 to 2000 over 10 minutes at 60,000 mass resolution.
Electrospray ionization was used in positive mode for
detection.9,10,15,17

Peak Detection and Annotation

An adaptive processing software package, apLCMS v5.9.8 (in
the public domain, http://web1.sph.emory.edu/apLCMS/),
designed for use with high-resolution mass spectrometry data,
was used for noise removal as well as for feature extraction,
alignment, and quantification.18 With apLCMS, each metabolic
feature is defined by a unique combination of m/z and
retention time. To enhance the feature detection process and
perform quality evaluation, systematic data re-extraction and
statistical filtering were performed using xMSanalyzer v2.0.8
(in the public domain, http://sourceforge.net/projects/xmsa
nalyzer/).19 Each sample was analyzed in triplicate, and
coefficient of variation (CV) was used to evaluate the quality
of all features. Pearson correlation within technical replicates
was used to evaluate the quality of samples.

Batch-effect correction was performed using ComBat.20

Computational annotation of the features to find database
matches in The Human Metabolome Database (HMDB) version
3.521 was performed using the xMSannotator v1.3.2 package in
R (R Project for Statistical Computing, Vienna Austria). This
package employs a multilevel clustering procedure based on
intensity across all samples, retention time, mass defect, and
isotope/adduct patterns.22 Additionally, xMSannotator uses
metabolic pathway associations to assign confidence levels
for database matches. Confidence levels range from zero to
three, designating annotations from no confidence to high
confidence. This reduces the risk of false annotations and
allows prioritization of computationally derived annotations for
further experimental evaluation and confirmation.19 Addition-
ally, an in-house database of previously confirmed metabolites
based on comparison of adduct, m/z, retention time, and
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
spectra to authentic standards or database spectra was used for
metabolite identity confirmation.23–25 Metabolite identification
levels were assigned based on the Metabolomics Standards
Initiative26 criteria as follows: (1) confirmation using tandem
mass spectrometry (MS/MS) and co-elution with authentic
standards (level 1); and (2) confirmation by comparing
experimental MS/MS spectra with MS/MS spectra in mzCloud
or in silico predicted spectra retrieved from MetFrag (level 2).

Liquid Chromatography/Electrospray Ionization
Tandem Mass Spectrometry

Metabolites identified in the pathway analysis and Wilcoxon
rank-sum test, P < 0.05, were fragmented under collision-
induced dissociation (CID) for further identification. Samples
were analyzed using a Thermo LTQ Velos Orbitrap high-
resolution (60,000 mass resolution) mass spectrometer (Ther-
mo Fisher Scientific, San Diego, CA, USA) operated in positive
ion mode with 10-minute C18 reversed-phase column chro-
matography and standard source conditions used for the
untargeted metabolic profiling. Prior to analysis, plasma
proteins were precipitated using acetonitrile:water (2:1 vol/
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vol) and allowed to sit on ice for 30 minutes. The supernatant
was then carefully pipetted for MS/MS analysis. CID was
accomplished using high purity N2 at a normalized collision
energy of 35%. The MS/MS data were processed using the
xcmsSet and xcmsFragments functions in XCMS to extract the
MS/MS fragments associated with each parent mass,27–29 and
the experimental spectra were compared with in silico
fragmentation using MetFrag30 or the spectra available from
mzCloud (in the public domain, https://www.mzcloud.org/).

Statistical and Bioinformatics Analysis

Descriptive statistics for demographic and clinical variables
were calculated for the study population. Comparisons
between DR patients and diabetic controls, as well as between
PDR and NPDR patients, were made using a two-tailed t-test for
continuous data (e.g., age, HbA1c, and diabetes duration) and
the X2 test for categoric data (e.g., sex and presence of
comorbidities). A Wilcoxon rank sum test was performed to
compare creatinine values between the respective groups as
these values were not normally distributed within the groups.

The metabolomics data were preprocessed and filtered
prior to statistical analysis. A log2 transformation was applied
to reduce heteroscedasticity and normalize results. Quantile
normalization was performed to reduce between-sample
variability.31 To increase confidence for selection of discrimi-
nating metabolites, data were filtered to include only those
features present in at least 50% of all samples and present in at
least 90% of either DR cases or diabetic controls. Similar
criteria were used in comparing NPDR patients and PDR
patients such that only features with nonmissing values
present in at least 50% of all samples and in at least 90% of
either NPDR or PDR samples were included for further
analysis. Metabolic features that discriminate between the
comparison groups were identified using the variable impor-
tance for projection (VIP) greater than or equal to 2 criterion
based on partial least squares discriminant analysis (PLS-DA)
implemented in the R package mixOmics.32 Features with VIP
greater than one are generally considered important.33,34 In
this study, a more stringent threshold of VIP ‡ 2 was used to
prioritize selection of highly discriminatory features between
DR patients and diabetic controls, and between PDR and NPDR
patients. Ten-fold cross-validation method was used for
evaluation of the selected features using a support vector
machine classifier implemented in R package e1071.35 One-
way hierarchical clustering analysis was performed to visualize
the clustering pattern of discriminatory features using a
Spearman rank correlation-based dissimilarity measure and
the complete agglomeration method implemented in hclust()

function in R.

Following feature selection, the fold change between the
comparison groups was calculated for each of the discriminat-
ing features. In addition, multiple linear regressions were used
to test the association between selected discriminatory
features and disease status (DR versus diabetic control; PDR
versus NPDR) using metabolite intensity as the dependent
variable and adjusting for potential confounding variables
including age, sex, HbA1c, and diabetes duration. All statistical
analyses were performed in R.

Pathway Analysis

Discriminating features with VIP ‡ 1.5 were used to perform
pathway analysis via Mummichog 2.0 (in the public domain,
http://mummichog.org/), a program designed for untargeted
metabolomics that combines metabolite annotation and
metabolic pathway/network analysis.36,37 As Mummichog
evaluates pathway level enrichment, a less stringent VIP cutoff
was used to generate the input list of discriminatory features to
prevent information loss and enhance the coverage of
metabolites within individual pathways.33,38 Only significant
pathways with an overlap size of three or greater are reported
in this study. Individual features with VIP ‡ 1.5 and matches to
[MþH]þ forms of metabolites from the top enriched pathways
were further evaluated using Wilcoxon rank sum tests and MS/
MS.

RESULTS

Study Population

The study population consisted of 173 patients with type 2
diabetes, including 83 DR patients and 90 diabetic controls.
The patient groups did not significantly differ in age or sex.
Compared with diabetic controls, DR patients had a longer
mean diabetes duration (P ¼ 6.8 3 10�10) and a higher mean
HbA1c (P ¼ 0.012) (Table 1). The two groups did not differ
significantly in rates of coronary artery disease, hypertension,
dyslipidemia, or creatinine levels. When comparing PDR
patients (n¼ 34) with NPDR patients (n¼ 49), no differences
were observed in demographic or clinical characteristics (Table
1).

DM Versus DR

Mass spectral data generated via LC-MS were extracted and
filtered to yield 10,306 features defined by m/z, retention time,
and ion intensity. A metabolome-wide association study
(MWAS) was performed to determine which metabolic features
differed between DR patients and diabetic controls. Based on

TABLE 1. Study Population Characteristics

Characteristic Diabetic Controls (n ¼ 90) DR Patients (n ¼ 83) P Value NPDR (n ¼ 49) PDR (n ¼ 34) P Value

Age, y 59.7 6 10.0 57.9 6 11.1 0.37 59.4 6 11.3 55.7 6 10.9 0.10

Males, % 52.3 63.2 0.21 61.4 65.6 0.89

Diabetes duration, y 11.0 6 5.1 19.0 6 9.0 6.8 3 10�10 17.7 6 7.6 20.9 6 10.6 0.28

HbA1c, % 7.9 6 1.6 8.5 6 1.9 0.012 8.6 6 1.8 8.5 6 2.1 0.97

Creatinine, mg/dL 0.86 6 0.29 0.92 6 0.46 0.13 0.92 6 0.22 0.92 6 0.64 0.88

CAD, % 25.6 22.9 0.82 22.4 23.5 1.0

HTN, % 76.7 73.5 0.76 79.6 64.7 0.21

DLD, % 74.4 61.5 0.10 67.4 52.9 0.27

Study groups were compared in terms of demographics and comorbidities. For age, diabetes duration, and HbA1c, the mean and standard
deviations are presented and comparisons were made by t-test. For creatinine levels, the median and interquartile range are presented, and
comparisons were made by Wilcoxon rank sum test. Sex and rates of comorbidities were compared by X2 test. HbA1c and creatinine levels taken
from date closest to date of blood draw. CAD, coronary artery disease; HTN, hypertension; DLD, dyslipidemia.
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PLS-DA, 236 differed with VIP ‡ 2 (Fig. 1A). A 10-fold, cross-
validation classification accuracy of 88.5% was achieved using
the 236 discriminatory features. Of these, 167 were increased
and 69 were decreased in the plasma of DR patients compared
with diabetic controls. These features clustered into 33
subclusters identified using hierarchical clustering analysis
(Fig. 1B).

To account for potential confounding effects of demograph-
ic or clinical differences between DR patients and diabetic
controls, we performed linear regression analyses for each of
the 236 discriminatory features with metabolite intensity as the
dependent variable and DR status, age, sex, diabetes duration,
and HbA1c levels as independent variables in the model.
Regressions were performed in the 162 patients (93.6%) with
all available clinical data (76 DR patients, 86 diabetic controls).
A total of 126 metabolic features differed between DR patients
and diabetic controls by both PLS-DA (VIP ‡ 2) and adjusted
linear regression analysis (P < 0.05). Eighteen of 126
discriminating features were assigned tentative annotations at

a medium or high confidence level using xMSannotator22

(Supplemental Table S1). These features include multiple
adducts of arginine, citrulline, and acylcarnitines.

We performed pathway analysis using the 832 features
discriminating between DR patients and diabetic controls with
VIP ‡ 1.5. We used VIP ‡ 1.5 in order to enhance the coverage
of metabolites in individual pathways and reduce information
loss.38 This demonstrated enrichment of nine metabolic
pathways (Table 2), five of which (metabolism of alanine and
aspartate, arginine and proline, aspartate and asparagine,
niacin, and urea cycle/amino group) are related to arginine
metabolism. The other four pathways included pyrimidine,
leukotriene, purine, and lysine metabolism.

To prioritize features for targeted evaluation using MS/MS
and the in-house metabolite library,23,24 we focused on features
with VIP ‡ 1.5 in the top pathways that both corresponded to
[MþH]þ forms of metabolites and were significant (P < 0.05) in
a Wilcoxon rank sum test comparing the plasma levels of these
metabolites in DR patients and diabetic controls. Those

FIGURE 1. Metabolic features different between DR patients and diabetic controls. (A) Manhattan plot of the VIP and m/z of 10,306 features shows
a total of 236 features were significantly different between DR patients (n ¼ 83) and diabetic controls (n ¼ 90) by PLS-DA using a VIP ‡ 2.0
(threshold indicated by blue dashed horizontal line). Significant metabolic features increased (red dots) or decreased (blue dots) in DR patients
compared with diabetic controls are indicated. (B) One-way hierarchical clustering based on the intensity of significant metabolite features selected
by PLS-DA (VIP ‡ 2.0, 236 m/z features) identified clusters of features that were increased (orange) or decreased (blue) in DR patients.

TABLE 2. Pathways Altered in DR Patients Compared With Diabetic Controls

Pathway Overlapping Features Pathway Size P Value

Niacin metabolism 4 5 2.3 3 10�4

Alanine and aspartate metabolism 4 6 9.1 3 10�4

Arginine and proline metabolism 6 14 1.4 3 10�3

Aspartate and asparagine metabolism 6 16 2.9 3 10�3

Pyrimidine metabolism 4 8 3.3 3 10�3

Leukotriene metabolism 4 9 5.8 3 10�3

Purine metabolism 3 8 0.029

Urea cycle/amino group metabolism 5 20 0.042

Lysine metabolism 3 10 0.047

Pathway analysis was performed using Mummichog 2.0 on the 832 features discriminating between DR patients and diabetic controls identified
by PLS-DA with a VIP ‡ 1.5. Overlapping features represents the number of metabolites enriched in the pathway, while pathway size describes the
total number of metabolites in each pathway.
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metabolites confirmed with Metabolomics Standards Initiative
(MSI)26 level 1 or 2 identification included arginine, citrulline,
glutamic c-semialdehyde, and dehydroxycarnitine (Fig. 2).

NPDR Versus PDR

To determine metabolic features that differ between PDR and
NPDR, we performed an MWAS comparing PDR patients (n ¼
34) with NPDR patients (n¼ 49). Of 10,306 metabolic features
that met quality control and filtering criteria, 219 features that
distinguish NPDR and PDR groups were identified based on
PLS-DA with a VIP ‡ 2.0 (Fig. 3A). A 10-fold cross-validation
classification accuracy of 91.7% was obtained using these 219
discriminatory features. Of these discriminating features, 108
were increased and 111 were decreased in the plasma of PDR
patients compared with NPDR patients. These features
clustered into 81 subclusters identified using hierarchic
clustering analysis (Fig. 3B).

To account for potential confounding effects of demograph-
ic or clinical differences between NPDR and PDR patients, we
performed linear regression analyses for each of the 219
discriminatory features with metabolite intensity as the
dependent variable and PDR status, age, sex, diabetes duration,
and HbA1c as independent variables in the model. Regressions

were performed in the 76 DR patients (91.6%) with complete
clinical data (44 NPDR, 32 PDR). A total of 151 metabolic
features differed between NPDR patients and PDR patients by
both PLS-DA (VIP ‡ 2) and adjusted linear regression analysis
(P < 0.05). Using xMSannotator, 46 of 151 discriminating
features were matched to known metabolites with medium or
high confidence (Supplemental Table S2). These features
included matches to multiple carnitine adducts, acylcarnitines,
and fatty acids.

Pathway analysis using the 766 features with VIP ‡ 1.5
identified enrichment in b-oxidation of saturated fatty acids,
fatty acid metabolism, and vitamin D3 metabolism (Table 3). A
Wilcoxon rank sum test was performed on the metabolites that
contributed to the enrichment of these pathways to prioritize
metabolites for further mass spectral analysis. The identity of
carnitine, elevated in PDR patients compared with NPDR
patients, was confirmed via LC-MS/MS (MSI level 1) (Fig. 4).

DISCUSSION

This MWAS used untargeted high-resolution LC-MS to identify
the metabolites and metabolic pathways altered in DR. After
adjusting for potential cofounders, we discovered 126 meta-
bolic features that distinguish DR patients and diabetic

FIGURE 2. Plasma levels of arginine, citrulline, dehydroxycarnitine, and glutamic c-semialdehyde are elevated in DR patients. Metabolites enriched
in the pathway analyses were further analyzed with a Wilcoxon rank sum test and using LC-MS/MS, revealing arginine, citrulline,
dehydroxycarnitine, and glutamic c-semialdehyde levels are significantly increased in DR patients compared with diabetic controls. DC, diabetic
controls. *Confidence level 1 by MSI standards, identities verified via LC-MS/MS with authentic standards. †Confidence level 2 by MSI standards,
putative annotation based on MS/MS spectral matching using MetFrag and mzCloud.
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controls. Pathway analysis using discriminating features
revealed alterations in multiple pathways, including the
metabolism of multiple amino acids, leukotrienes, niacin,
pyrimidine, and purine. Arginine, citrulline, glutamic c-semi-
aldehyde, and dehydroxycarnitine were key contributors to the
differences in the metabolic pathways identified, and their
identities were confirmed by LC-MS/MS. We also identified 151
features that distinguished PDR from NPDR patients after
adjusting for age, sex, diabetes duration, and HbA1c. Pathway
analysis using discriminating features revealed alterations in
the b-oxidation of saturated fatty acids, fatty acid metabolism,
and vitamin D3 metabolism. Carnitine, a key molecule in
oxidation and metabolism of fatty acids, was elevated in PDR
patients compared with NPDR patients.

The relationship between arginine metabolism and DR is
complex, as arginine is a key molecule in several overlapping
pathways with numerous metabolic fates in the body. In the
urea cycle, arginine is cleaved by arginase to form ornithine
and urea. Ornithine is then converted back to arginine through
the intermediate citrulline, completing the cycle. Alternatively,
ornithine may also be metabolized to proline through the
intermediate glutamic c-semialdehyde.39 Increased levels of
proline, ornithine, citrulline, and arginine have been found in
the vitreous of patients with PDR,11 and elevations in serum
arginine were discovered in patients with severe DR.40 Our

study identified increased plasma levels of arginine, citrulline,
and glutamic c-semialdehyde in patients with DR, consistent
with these prior studies. Studies in mouse models of DR and in
bovine retinal endothelial cells cultured in high glucose found
elevated arginase activity, also implicating derangements in
arginine metabolism as a mediator of DR.41,42 Our results
provide further evidence that alterations in urea cycle
metabolites, particularly arginine and citrulline, are associated
with DR.

Arginine also serves as a substrate for the enzyme nitric
oxide synthase, which catalyzes a reaction that produces
citrulline and nitric oxide (NO), a vasodilator that plays a
critical role in maintaining the health of the vascular
endothelium. NO synthase is inhibited by asymmetric
dimethylarginine (ADMA), which has been reported to be
elevated in plasma,43 serum,40 and aqueous humor44 of
patients with DR. Given our current findings and these
previous studies, it is possible that dysregulated arginine
metabolism may be linked not only through urea cycle
metabolites, but also through ADMA and NO.

This study also identified increased levels of an acylcarni-
tine, dehydroxycarnitine, in DR patients compared with
diabetic controls, and increased plasma carnitine in patients
with PDR compared with NPDR. Carnitine is essential for the
transport of long chain fatty acids into mitochondria via

FIGURE 3. Metabolic features that differ between NPDR and PDR patients. (A) Manhattan plot of the VIP and m/z of 10,306 features showing a total
of 219 features were significantly different between PDR patients (n¼34) and NPDR patients (n¼49) using a VIP ‡ 2.0 (threshold indicated by the
blue dashed horizontal line). Significant metabolic features increased (red dots) or decreased (blue dots) in PDR compared with NPDR patients are
indicated. (B) One-way hierarchical clustering based on the intensity of significant metabolite features selected by PLS-DA (VIP ‡ 2.0, 219 m/z
features) identified clusters of features that were increased (orange) or decreased (blue) in PDR patients.

TABLE 3. Pathways Altered in PDR Patients Compared With NPDR Patients

Pathway Overlapping Features Pathway Size P Value

Saturated fatty acids b-oxidation 3 6 0.032

Fatty acid metabolism 4 10 0.038

Vitamin D3 metabolism 3 7 0.048

Pathway analysis was performed using Mummichog 2.0 on the 766 features identified by PLS-DA with a VIP ‡ 1.5. Overlapping features
represents the number of metabolites enriched in the pathway, while pathway size describes the total number of metabolites in each pathway.
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acylcarnitine intermediates prior to b-oxidation. Carnitine has
been shown in some studies to be decreased in type 2 diabetes
and has even been suggested as a potential adjuvant in the
treatment of diabetes.45 A recent review by Bene et al.45

describes studies that report decreased carnitine levels in type
2 diabetes and in various diabetic complications, but also cites
other studies in which no relationship between carnitine and
diabetic complications was seen.46–48 Our results are consis-
tent with a previous study, which compared PDR patients with
nondiabetic controls and found elevated acylcarnitine levels in
vitreous samples.11 It is likely that differences in study design
and clinical phenotyping, as well as small sample sizes in some
studies, contribute to the inconsistencies thus far in the
literature regarding carnitine metabolites and DR. Of note, our
lab recently demonstrated that the carnitine shuttle pathway is
altered in NVAMD.9 Like PDR, NVAMD is characterized by new
vascular growth. Given that evidence demonstrates carnitine
metabolites are elevated in both PDR and NVAMD, it is possible
that changes in fatty acid metabolism are related to ischemia or
neovascularization. A more detailed investigation is necessary
to further characterize the relationship between carnitine
metabolites and PDR.

The large cohort of DR patients and diabetic controls
enrolled from the same institution with standardized sample
collection and processing are strengths of the study. However,
because most patients were Caucasian and all from the same
geographic region, the generalizability of these results is not
yet certain. Untargeted high-resolution LC-MS is a sensitive
technique providing broad coverage of endogenous, environ-
mental, and dietary metabolites. This sensitivity increases the
chances of identifying metabolites that are important in DR
pathology, but it is important in untargeted studies to account
for potential confounding factors and to provide confirmation
of metabolite identity. For this analysis, we confirmed that
cases and controls were similar in rates of critical systemic
conditions. However, these comorbidity assignments were
based on clinical notes and treatment history, and it is possible
that there may have been undiagnosed conditions in patients
included in the study. We performed linear regressions to
ensure that discriminating metabolites differed between cases
and controls when adjusting for potential confounding

variables. We also used LC-MS/MS to confirm the molecular
identity of the most critical discriminating features. Addition-
ally, this metabolomics study is the first to specifically compare
the metabolic profiles of PDR and NPDR patients.

In summary, this metabolomics analysis demonstrates that
arginine metabolism is dysregulated in DR and that fatty acid
metabolism is altered in PDR. Further studies are necessary to
determine how these pathways are related to DR and the more
advanced PDR. Characterizing these relationships may lead to
the identification of novel therapeutic targets for this vision-
threatening disease.
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