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The purpose of this systematic review was to investigate the scientific evidence to
support the use of direct renin inhibitors (DRIs) in diabetic nephropathy (DN). MEDLINE
was searched for articles reported until 2018. A standardized dataset was extracted
from articles describing the effects of DRIs on plasma renin activity (PRA) in DN. A total
of three clinical articles studying PRA as an outcome measure for DRIs use in DN were
identified. These clinical studies were randomized controlled trials (RCTs): one double-
blind crossover, one post hoc of a double-blind and placebo-controlled study, and one
open-label and parallel-controlled study. Two studies reported a significant decrease
of albuminuria associated with PRA reduction. One study had a DRI as monotherapy
compared with placebo, and two studies had DRI as add-in to an angiotensin II (Ang
II) receptor blocker (ARB). Of 10,393 patients with DN enrolled in five studies with
DRI, 370 (3.6%) patients had PRA measured. Only one preclinical study was identified
that determined PRA when investigating the effects of aliskiren in DN. Moreover,
most of observational preclinical and clinical studies identified report on a low PRA or
hyporeninemic hypoaldosteronism in DM. Renin inhibition has been suggested for DN,
but proof-of-concept studies for this are scant. A small number of clinical and preclinical
studies assessed the PRA effects of DRIs in DN. For a more successful translational
research for DRIs, specific patient population responsive to the treatment should be
identified, and PRA may remain a biomarker of choice for patient stratification.

Keywords: diabetes mellitus, diabetic nephropathy, renin inhibitor, plasma renin activity, renin- angiotensin
system

INTRODUCTION

Diabetic nephropathy (DN) is the primary cause of chronic kidney disease. Despite therapeutic
advances, DN remains the principal cause of mortality in diabetic patients (Dugbartey, 2017).

Renin–angiotensin system (RAS) has been classically involved in the progression of diabetic
cardiovascular disease. A chronically activated endocrine or paracrine RAS is considered as a
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principal contributor to the pathophysiology of end-organ
damage in diabetes mellitus (DM), including the DN (Urushihara
and Kagami, 2017). As a result, therapeutic drugs for DN
are targeting mostly the renin–angiotensin–aldosterone system
(Yacoub and Campbell, 2015).

Although debate remains, the therapeutic drugs for DN
currently consist mainly of angiotensin II (Ang II) receptor
blockers (ARBs) and angiotensin-converting enzyme inhibitors
(ACEIs) used for their antihypertensive and antiproteinuric
measures (Bhattacharjee et al., 2016). Direct renin inhibitors
(DRIs) acting on rate-limiting enzyme of the RAS offered
probability of a greater inhibition of the system so as to
have better therapeutic outcomes in patients with DN (Parving
et al., 2008). The rationale for developing renin inhibitors
was as follows: renin is the first and rate-limiting step in
RAS cascade (low renin concentration in the pM range),
renin has high specificity for angiotensinogen (little side
effects anticipated), ACEIs and ARBs result in incomplete RAS
suppression [reactive rise in plasma renin activity (PRA), “escape”
mechanism, and other products of RAS (e.g., Ang1–7, AIII,
and AIV)] (Wood and Close, 1996; Nussberger et al., 2002;
Stanton, 2003). However, larger trials of the DRI aliskiren
in combination with an ACE inhibitor or ARB in patients
with DN did not reduce cardiovascular or renal outcomes
(Parving et al., 2012).

Plasma renin activity played a central role as a
pharmacological biomarker for drug development, safety,
and dosing in the research and development (R&D) of
DRIs such as remikiren, enalkiren, zankiren, and aliskiren.
Generally, DRIs induced rapid reductions of 65–95% PRA
(Lambers Heerspink et al., 2009). PRA has been used in the
estimation of the extracellular volume, because this correlates
inversely with PRA (Juncos, 2013). Hence, Brunner et al.
(1972) categorized hypertensive patients by their volume
status using PRA levels. Augmented PRA levels represent
a risk factor of cardiovascular disease (Alderman et al.,
1991; Parving et al., 2009). Whereas several pathologies are
associated with an augmented PRA, DM and associated DN
apparently are not.

The therapeutic effects of RAS inhibitors may be important
depending on the pathological activation of endocrine and/or
tissue RAS (Gasparo et al., 2013; de Alencar Franco Costa et al.,
2015). For instance, disease conditions with low baseline PRA
levels reduced the treatment efficacy of DRIs (Stanton et al.,
2009). Few reviews on DRI for DN as therapeutic target discussed
PRA as an outcome measure (Abassi et al., 2009; Rafiq et al.,
2011; Jagadeesh et al., 2012). These reviews document that PRA
is reduced in DM with or without DN.

Early studies described hyporeninemia or low-renin
state as a characteristic state of circulatory RAS in DM
patients with or without DN (Sousa et al., 2016). Our
and other studies (de Alencar Franco Costa et al., 2015;
Sousa et al., 2016) evidencing a diabetes-induced low-
renin status may indicate that a DRI is not always effective
in treating DN. Therefore, the purpose of this study was
to examine and synthesize the existing literature on DRI
effects on PRA in DN. Literature search included studies that

investigated DRIs such as remikiren, enalkiren, zankiren, or
aliskiren in DN.

METHODS

Literature Search Strategy
We conducted a systematic review of investigative studies in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) consensus guidelines
(Moher et al., 2016). A literature search of the MEDLINE
database via PubMed was performed using a structured
approach to identify relevant studies. A manual search was
also conducted through searching the reference lists of relevant
articles to expand the included studies. Eligibility assessment
of identified articles was performed independently by two
reviewers for preclinical studies and two reviewers for clinical
studies, and inconsistencies were settled by one of the
senior reviewers.

Inclusion Criteria
To identify relevant articles on original research, we associated
terms referring to the use of PRA and/or renin inhibitors in DN.
All experimental studies on humans and animals were eligible.
Document types included were those produced as original and
review papers written in English and published until 2018.
The following Medical Subject Headings (MeSH) were used
in the search: DN OR “diabetic kidney disease” AND “renin
inhibitor” OR “aliskiren” OR “remikiren” OR “enalkiren” OR
“zankiren.” We used filters to select the type of study, and we
gathered data from clinical trials and from case–control and
cohort studies and reviews, designed to assess the effects of
DRIs on PRA in DN.

Exclusion Criteria
Articles were excluded if they were clinical case reports, clinical
case series, letters, editorials, opinions, points of views, or
anecdotes. Also, articles that were written in languages other than
English were discarded.

Data Extraction and Quality Assessment
Four investigators evaluated independently titles and abstracts
and selected the articles for further full-text evaluation.
Disagreements were resolved by consensus or by consultation
with one of the senior investigators. When data were not found
in the published article, authors were contacted to provide the
missing information. The following data were collected: title,
author and study group, publication year, DN, DRI, and PRA.

RESULTS

Search Results and Study Selection
Figure 1 details the search and selection process of articles
that determined (or discussed in case of reviews) PRA when
investigating DRI effects in DN. Of 920 potentially relevant
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FIGURE 1 | PRISMA Flow Diagram.

papers initially identified through the PubMed search, after de-
duplication, we reviewed 918 titles and abstracts; from these, we
included 878 in a full-text review. A further 873 articles were
excluded after full review, and five were included in the present
study: one preclinical study and four clinical studies.

Clinical Studies With Direct Renin
Inhibitor in Diabetic Nephropathy That
Determined Plasma Renin Activity
Three clinical studies have been identified to have reported
effects of DRI (aliskiren) on PRA in DN (Table 1). Two studies
reported a significant decrease of albuminuria associated with
PRA reduction (Persson et al., 2009; Abe et al., 2012). The post hoc
analysis of ALTITUDE study (Parving et al., 2012) in a subset
of 133 patients reported a non-significant reduction of urinary
albumin creatinine of 22 and 9% in the aliskiren and placebo
groups, respectively (Persson et al., 2012a).

One double-blind, randomized study that investigated the
effect of aliskiren as monotherapy in patients with DM and
hypertension (HTN) reported a decrease of 72% in PRA (Persson
et al., 2009). Two other studies that investigated aliskiren or
placebo in addition to an ARB [one a post hoc analysis (Persson
et al., 2012a) and the other an open-label, randomized study (Abe
et al., 2012)] reported a PRA decrease of 71–77%. The data from
the studies were heterogeneous and not sufficient to carry out a
quantitative analysis. There were not enough data in two studies
(Abe et al., 2012; Persson et al., 2012a), the reported PRA data
had a skewed distribution in one study (Persson et al., 2009), and
there was no blindness in one study (Abe et al., 2012). In addition,
in one study, PRA was determined only in a subset of patients
from the total investigated in the aliskiren group: 22% (133 of
599) patients in the (Persson et al., 2012a) study.

Of 10,393 patients with DN enrolled in five studies [599 in
Parving et al. (2008); 26 in Persson et al. (2009); 8,561 in the
ALTITUDE study (Parving et al., 2012); 64 in Abe et al. (2012);
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TABLE 1 | Clinical Studies with DRI in diabetic nephropathy that determined plasma renin activity.

Study Study type DRI monotherapy/add-in
therapy

Study participants Renal outcomes DRI effect on PRA

Persson et al.,
2009

Double-blind,
randomized, crossover
trial

Aliskiren, irbesartan, and
aliskiren/irbesartan,
2-month treatment

26 patients with T2DM,
HTN, and albuminuria
(>100 mg/day)

Significant reduction in
urinary albumin,
glomerular filtration
rate, and 24-h blood
pressure from placebo

72%↓ as monotherapy
compared with placebo

Persson et al.,
2012a

AVOID post hoc
analysis

Add-in: aliskiren or placebo
in addition to losartan,
6-month treatment

Patients with HTN and
T2DM with
nephropathy: a
prespecified subset of
133 (22%) patients
from a total of 599
patients

Not significant
reduction in urinary
albumin–creatinine ratio

71%↓ compared with
placebo (90%↓ compared
with baseline; placebo:
19%↓)

Abe et al., 2012 Open-label,
randomized,
parallel-controlled study

Add-in: aliskiren or placebo
in addition to telmisartan
and amlodipine, 6-month
treatment

64 patients with T2DM,
DN, and HTN

Significant reduction in
urinary
albumin–creatinine ratio

70–77%↓ compared with
baseline; 89%↓ compared
with calcium channel
blocker (CCB) group

T2DM, type 2 diabetes mellitus; DN, diabetic nephropathy; HTN, hypertension; PRA, plasma renin activity; DRI, direct renin inhibitor.

1,143 in the VIvID study (Bakris et al., 2013)], 370 (3.6%) patients
had PRA measured (Persson et al., 2009, 2012a; Abe et al., 2012).

Preclinical Studies With Direct Renin
Inhibitor in Diabetic Nephropathy That
Determined Plasma Renin Activity
One preclinical proof-of-concept study testing the effects of
aliskiren in DN determined PRA (Table 2). This study used
as model for DM the streptozotocin (STZ)-induced DM in
C57BL/6J mice fed on a high-fat diet, determined PRA, and

found higher levels in DN when compared with the control non-
DN (Kidokoro et al., 2016). In Table 2 are included articles that
reported renal renin outcome measures, including plasma renin
concentration and renin mRNA expression.

DISCUSSION

The present study shows that a low number of preclinical
and clinical studies with DRIs as monotherapy or add-in
therapy in DN assessed PRA. Only two randomized controlled

TABLE 2 | Preclinical studies with DRI in diabetic nephropathy that determined plasma renin or renal RAS.

Study Experimental model DRI Outcome Renal/plasma renin in
DN control vs. healthy
control

Effects of DRI on
renal/plasma renin

Dong et al., 2010a db/db mice, with
obesity and T2DM

Aliskiren, 6 weeks’
treatment

Protects against
cardiovascular
complications and
pancreatic injury

Renal renin mRNA not
different than that of
control db/m mice

Increased renal renin
mRNA expression

Dong et al., 2010b db/db mice with
obesity and T2DM

Aliskiren, 6 weeks’
treatment

Protects against DN Renal renin mRNA higher
than that in control db/m
mice

Increased renal renin
mRNA expression

Kang et al., 2011 db/db mice with
obesity and T2DM

Aliskiren, 3 months’
treatment

Decreased albuminuria,
glomerulosclerosis,
interstitial fibrosis, improved
insulin resistance

Lower plasma renin
concentration (PRC) in
db/db mice than in db/m
mice (control non-DM)

Increased PRC

Wang et al., 2014 STZ-DBA/2J mice fed
on a high-fat diet

Aliskiren, 6 weeks’
treatment

Protects against DN Renal renin mRNA in DN
higher than that in control
non-DN

Increased renal renin
mRNA expression

Zhou et al., 2015 db/db mice, with
obesity and
T2DM + uninephrectomy

Aliskiren, 4 weeks’
treatment

Protects against DN PRC normal, renal renin
mRNA higher than that in
control non-DN

Increased PRC and
renal renin mRNA
expression

Kidokoro et al., 2016 STZ-C57BL/6J mice
fed on a high-fat diet

Aliskiren, 4 weeks’
treatment

Protects against DN PRA and in vivo imaging
of renal renin activity
higher than that in control
non-DN

Decreased PRA and
in vivo imaging of renal
renin activity

T2DM, type 2 diabetes mellitus; DRI, direct renin inhibitor; RAS, renin–angiotensin system; DN, diabetic nephropathy.
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studies reported renoprotective effects in DN associated with a
significant reduction in PRA.

Of eight publications identified to report DRI effects on
urinary albumin in DN (Parving et al., 2008, 2012; Persson et al.,
2009, 2010, 2011, 2012a,b; Abe et al., 2012), only three clinical
studies presented data on PRA. All three involved patients with
both DM and HTN. As aliskiren does not lower blood pressure
in hypertensive patients with low PRA (Sealey and Laragh,
2009), Jagadeesh et al. (2012) suggested that “it may be useful
to dichotomize RAAS-related pathologic syndromes into ones
associated with high renin (some HTN, any HTN after diuretic
treatment), where aliskiren appears to be quite effective, and
low-renin” (like diabetes), where aliskiren is of uncertain value.
Indeed, in the AVOID study (Parving et al., 2008), a prespecified
subset of 133 (22%) patients from a total of 599 patients was
identified with a significant decrease in PRA by aliskiren (Persson
et al., 2012a). The study of Uresin et al. (2007) that reported
a significant reduction in 24-h ambulatory blood pressure
presented PRA data on 32% of the total patients recruited in the
DRI study group. As such, important information that could lead
to patient stratification could be learned from disclosing the PRA
data from the ALTITUDE study (Parving et al., 2012).

Dual therapy of the DRI aliskiren with ACEI or ARBs was
commonly investigated in patients with HTN, heart failure, and
diabetes with or without proteinuria. It is conceptualized that the
antihypertensive efficacy of aliskiren is increased when adding
ACEIs, ARBs, or diuretics, which produce a reactive increase
in PRA. Indeed, aliskiren in combination with ACEIs or ARBs
showed significant blood pressure and proteinuria reductions
than monotherapy alone in phase II trials with hypertensive
patients with or without DM (Persson et al., 2009), reviewed
by Şen et al. (2013). Clinical trials that studied the combination
of aliskiren and ACEI or ARBs and involved patients with
DM include Pool 2007, ALOFT 2008, ALLAY 2009, AVANTE
GARDE 2010, VANTAGE 2010, and ASPIRE 2011. These studies
were systematically reviewed by Harel et al. (2012). They were
not designed to investigate outcomes in DM patients. A meta-
analysis of 13,395 patients with diabetes showed no benefit
from the addition of aliskiren to standard medical therapy
(Zheng et al., 2017).

Finding a preclinical experimental model for DM and DN
was challenged by the high selectivity of aliskiren for human
renin compared with renin from other species (IC50 values
[50% inhibitory concentrations]: human 0.6, marmoset 2, rat
80, dog 7) (Wood et al., 2003). The first studies of DRI on an
experimental DM model used the STZ-induced DM in high-
renin hypertensive (mRen-2)27 rats (Kelly et al., 2007; Feldman
et al., 2008). However, this DM model cannot consider the
phenotype alterations as primarily induced by DM because these
rats genetically activated renin production. Four studies reported
DRI effects on DN of db/db mice (Table 2). Another study
on db/db mice showed no significant differences in their PRA
compared to control db/m mice (Gallo et al., 2016).

Experimental models investigated for proof-of-concept
efficacy of aliskiren in DN were db/db mice for type 2 DM
(T2DM) and STZ mice (DBA/2J and C57BL/6J strains) for type
1 DM (T1DM). The db/db mice are characterized by T2DM,

TABLE 3A | Preclinical studies that determined PRA in experimental DM.

Study Experimental model DM effect on PRA

Christlieb, 1974 Alloxan-DM rat, acute DM
(alloxan is nephrotoxic)

Low PRA

Christlieb et al., 1979 Alloxan-DM rat, 3 months PRA decreased
progressively

Ballermann et al.,
1984

STZ-DM rat, 1 month PRC values in
untreated DM rats were
lower than those of
insulin-treated rats or
controls

Pratt et al., 1985 Alloxan-DM rat, 7 weeks Low PRA

Kigoshi et al., 1986 STZ-DM rat, 1.5 months Hyporeninemic
hypoaldosteronism

Kim, 1994 STZ-DM rat, 2 months Hyporeninemic
hypoaldosteronism

Di Loreto et al., 2004 Alloxan-DM rat, 1 month Low PRA, glucose
overload did not
significantly affect these
values

de Alencar Franco
Costa et al., 2015

STZ-DM rat, 3 months Low PRA, PRC, and
renal renin mRNA

PRA, plasma renin activity; DN, diabetic nephropathy; DM, diabetes mellitus;
STZ, streptozotocin.

elevated systolic blood pressure, obesity, and hyperlipidemia.
They develop T2DM with high plasma levels of insulin and
glucose at weeks 9–10 of age (Forbes and Cooper, 2013). The
main outcomes studied for DN, including increased albumin
excretion and glomerular pathology, are very similar between
mouse lines with T1DM or T2DM and humans with DM
(Azushima et al., 2017).

Locally activated synthesis and activity of renin have been
identified in kidney and other organs in different pathologies
(Bader et al., 2001). Such organs where a local tissue RAS
has been postulated include the heart, blood vessels, kidney,
brain, adipose tissue, adrenal gland, pancreas, liver, reproductive
system, lymphatic tissue, placenta, and eyes (Nehme et al.,
2019). Diseases where chronically activated local tissue RAS
has been identified include HTN, atherosclerosis, heart failure,
cardiac hypertrophy and fibrosis, chronic kidney disease, and
glaucoma (Ames et al., 2019; Nehme et al., 2019). An increase
in local production of active angiotensins could be through the
classical renin–ACE pathway or through alternative pathways
(Ferrario et al., 2014). Translational proof-of-concept studies
shall distinguish the enzymes involved in these RAS pathways
in order to identify therapeutic targets. For instance, we have
demonstrated in a proof-of-concept study that renin might be
a therapeutic target in glaucoma (Wang et al., 2012). This does
not seem to be the case in DN where both preclinical and
clinical proof-of-concept studies indicate that DN is associated
with a low-renin state. In Table 3B, we summarized the clinical
studies that described hyporeninemia in DM, with the first report
dated year 1973. These studies indicate that hyporeninemic
hypoaldosteronism is underdiagnosed in DM (Sousa et al., 2016).
Several mechanisms have been suggested as responsible for
the reduction in renin release in patients with DM, including
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TABLE 3B | Clinical studies on low PRA in DN.

Study Study participants PRA in DM

Chelaghma and Oyibo, 2018 One patient with DM Hyporeninemic hypoaldosteronism

deLeiva et al., 2010 Two patients with DM Hypoaldosteronism due to low PRA

Hollenberg et al., 2003 31 Patients with T1DM Intrarenal RAS activated without PRA

Bojestig et al., 2000 80 Patients with T1DM Low PRA and high plasma ANP

Elisaf et al., 1999 One patient with DM Hyporeninemic, hypoaldosteronism, and autonomic neuropathy

Bonnet and Thivolet, 1996 One patient with DM Hyporeninemic hypoaldosteronism

Fukuchi, 1991 118 Patients with DM Hyporeninemic selective hypoaldosteronism may be associated with
DM nephropathy or DM neuropathy

Paulsen et al., 1989 100 Teenage patients with T1DM Decline of PRA over 5 years

Villoria et al., 1988 13 Patients with DM and chronic renal failure Hyporeninemic hypoaldosteronism associated with type IV renal tubular
acidosis

Antonipillai et al., 1981 12 Patients with DM Low PRA and active renin (AR)

Fernandez-Cruz et al., 1979 16 Normotensive diabetics with long-term disease Hyporeninemia

Farese et al., 1980 Four patients with DM Diabetic hyporeninemic hypoaldosteronism

Tuck et al., 1979 Five patients with DM with mild renal insufficiency Hyporeninemic hypoaldosteronism associated with DM and neuropathy
may be due to decreased sympathetic nervous system activity

Kuhlmann et al., 1978 Three patients with DM Hyporeninemic hypoaldosteronism

Christlieb et al., 1978 44 Patients with DM Hyporeninemic hypoaldosteronism is frequent in diabetics with
nephropathy

Christlieb et al., 1976 48 Patients with DM (1) PRA is normal in normotensive diabetics (2) Patients with diabetes,
hypertension, and nephropathy have “low renin hypertension”

Christlieb et al., 1974 Eight patients with DM Low PRA

de Chatel et al., 1977 60 Patients with DM Low PRA

Perez et al., 1977 12 Patients with DM Hyporeninemia and hypoaldosteronism

Weidmann et al., 1973 Four patients with DM Low PRA

PRA, plasma renin activity; DN, diabetic nephropathy; DM, diabetes mellitus; RAS, renin–angiotensin system; ANP, atrial natriuretic peptide; T1DM, type 1 diabetes
mellitus.

FIGURE 2 | Renal renin-angiotensin system in diabetes mellitus. AOGEN, angiotensinogen; ACE, angiotensin-converting enzyme; Ang, angiotensin; AT1,
angiotensin type 1 receptor.
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juxtaglomerular injury, autonomic dysfunction, and primary
increase in renal salt retention with volume expansion (Phelps
et al., 1980; Sousa et al., 2016). The first experimental studies of
RAS in DM used alloxan-DM or STZ-DM rat models (Table 3A).
Preclinical evidence for an activated renal RAS in DM is
suggested by our and others studies on increased synthesis and
urinary secretion of renal angiotensinogen (Zimpelmann et al.,
2000; Saito et al., 2009; de Alencar Franco Costa et al., 2015;
Lee et al., 2017) (Figure 2 shows urinary angiotensinogen as a
potential biomarker). STZ-induced DM in rats caused a 69%
increase of Ang II in the renal interstitial fluid, which was
decreased 27% by aliskiren (6 weeks’ treatment) (Matavelli et al.,
2012). As aliskiren did not normalize the DM-increased renal
interstitial fluid Ang II, alternative Ang II-forming pathways
might have been activated. One candidate enzyme that may
take over the renin activity in kidney to activate the local
Ang II production is cathepsin L. Cathepsin L was identified
as a potential sex-specific biomarker for renal damage by the
Actelion group (Bauer et al., 2011). Cathepsin L appears to be
importantly involved in the development of albuminuria and
renal damage in early experimental DN (Garsen et al., 2016)
(Figure 2). Angiotensinogen may be degraded by cathepsins
including cathepsin L, which may degrade angiotensinogen
(Watanabe et al., 1989). As cathepsin L can be involved in
the pathogenesis of DN through several mechanisms, targeting
with suitable antagonists may hold promises for therapeutic
interventions (Kumar and Anders, 2016). PRA is not a good
indicator of local RAS activity as measure circulating production
of angiotensin I, where ACE, alternative Ang II-forming enzymes,
and Ang II might be increased in the local tissue. Although PRA
is a pharmacological efficacy biomarker for aliskiren and has
been considered as an outcome measure in DM, the effects of
renin inhibitors on local tissue RAS are not easily demonstrable

in clinical studies because there are no available biomarkers for
local RAS activation. Studies on urinary peptidome might lead to
the characterization of biomarkers for local renal RAS activation,
such as cathepsin L or D (Krochmal et al., 2017).

CONCLUSION

Very few studies addressed the PRA as the outcome measure of
DRI treatment effect in DN. Therefore, for a more successful
translational research, specific patient population where DRI
treatment is effective in DN should be identified. Additional
well-designed randomized controlled trials (RCTs) using PRA
as a marker for patient stratification and randomization
may be warranted.
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