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Abstract

Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial
function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could
result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation
transporters 1 (Octn1, Na+-independent) and 2 (Octn2, Na+-dependent); however, their kinetic properties and potential
consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in
aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different
extracellular pH (pHo 5.5–8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-
hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of
endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1–100 nmol/L) was
measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR
compared with WKY rats, an effect due to reduced Na+-dependent (Na+

dep) compared with Na+-independent (Na+
indep)

transport components. Saturable L-carnitine transport kinetics show maximal velocity (Vmax), without changes in apparent
Km for Na+

indep transport in SHR compared with WKY rats. Total and Na+
dep component of transport were increased, but

Na+
indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na+

indep

transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of
artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-
dependent and restored by L-carnitine. All together these results suggest that reduced L-carnitine transport (likely via Na+-
dependent Octn2) could limit this compound’s potential beneficial effects in RAECs from SHR.
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Introduction

Essential hypertension is characterized by high blood pressure

without an identifiable primary cause [1,2]. Oral administration of

L-carnitine, a natural amino acidic compound, in patients with

hypertension resulted in an improvement of arterial blood

pressure, thus suggesting a beneficial vascular role for this

compound in these subjects [3,4]. Along with the well-described

role of L-carnitine on fatty acid mitochondrial metabolism [5,6],

L-carnitine also increases the metabolic activity in human vascular

endothelium [7,8], and improves the bioavailability of nitric oxide

(NO) in rat aorta [9] and in fetal lamb pulmonary vasculature

[10]. Other studies show that L-carnitine supplementation in

healthy subjects improved postprandial flow-mediated dilation

after a high-fat meal [11]. Taken together, all these findings

suggest that the transport of L-carnitine into the endothelial cells

could be an essential, limiting step of its potential beneficial

biological effects in hypertension.

The uptake of L-carnitine is mediated by novel organic cation

transporters (OCTNs) of which at least three isotypes (rOctn1,

rOctn2 and rOctn3) are expressed in rats [12]. Octn1- an Octn3-

mediated L-carnitine transport is independent of sodium (Na+)

with apparent Michaelis-Menten (Km) values in the range of 2–

200 mmol/L [13–15] and 3–6 mmol/L [16,17], respectively. On

the contrary, Octn2-mediated transport is Na+-dependent with
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apparent Km between 2–20 mmol/L [16,18–23]. Studies per-

formed in spontaneously hypertensive rat (SHR) show that L-

carnitine restores endothelial function in preparations of aortic

rings [24,25], and ameliorates the high-systolic arterial blood

pressure exhibited by hypertensive animals [5,8,26]. Interestingly,

there are no reports addressing the properties of L-carnitine

transport in endothelial cells from SHR. Thus, we hypothesize

that the activity of OCTNs-mediated membrane transport of L-

carnitine by the aortic endothelium is reduced in these hyperten-

sive animals.

The results of this study show that aorta endothelial cells from

SHR exhibit reduced maximal L-carnitine transport capacity

compared with cells from non-hypertensive animals. Transport of

L-carnitine was saturable and mediated by a larger Na+-

independent, Octn1-like compared with a Na+-dependent,

Octn2-like transport activity in these cells from SHR. However,

similar Na+-dependent and Na+-independent transport compo-

nents were found in non-hypertensive rats. It is suggested that the

observed endothelial dysfunction in SHR could be due to reduced

Na+-dependent transport of L-carnitine, which could limit the

potential beneficial effects of this compound in the endothelial

function in hypertension.

Methods

Ethics statement and animals
This investigation strictly conforms to the principles outlined in

the European Union Guidelines on the protection of animals used

for scientific purposes (DIRECTIVE 2010/63/EU of the Euro-

pean Parliament and of the Council). Protocols were approved by

the Committee on the Ethics of Animal Experiments of the

University of Sevilla (Spain). Normotensive male Wistar-Kyoto

(WKY) and spontaneously hypertensive rats (SHR) aged 8 weeks

were obtained from the French Animal Production Center,

JANVIER S.A.S. (Saint Berthevin Cedex, France). Rats were

housed at a temperature of 22–24uC in individual cages and freely

fed (ad libitum) regular pellet diet (12 mm pellet, Harlan

Laboratories, Indianapolis, USA) until they were 10 weeks of

age (wa). They were divided into two groups of 15 animals each,

i.e., WKY (control) and SHR (hypertensive) animals. Character-

ization of WKY rats and SHR in terms of the diastolic and systolic

blood pressures and body weight was determined at arrival of the

animals (8 wa) and at the moment of isolation of aorta endothelial

cells (i.e., 10 wa) as reported [26]. Diastolic and systolic blood

pressure values were not significantly different (P.0.05) at 8 wa

(diastolic = 93 6 3 mmHg, systolic = 123 6 6 mmHg)

compared with 10 wa (diastolic = 95 6 2 mmHg, systolic =

124 6 5 mmHg) in WKY rats. However, these parameters were

elevated (P,0.01) in SHR at 8 wa (diastolic = 190 6 2 mmHg,

systolic = 233 6 2 mmHg) and 10 wa (diastolic = 191 6

2 mmHg, systolic = 231 6 1 mmHg) compared with the

corresponding systolic or diastolic values in WKY rats, but were

not significantly different (P.0.05) between them in SHR.

Cell culture
Aortas from WKY rats and SHR aged 10 weeks were excised

and placed in a petri dish containing phosphate-buffered saline

(PBS) solution ((mmol/L) NaCl 130, KCl 2.7, Na2HPO4 0.8,

KH2PO4 1.4 (pH 7.4, 4uC)). The tissue was rinsed by changing

PBS until free of any visible blood, and the aorta was stripped of

adventicia as reported [27]. Rat aorta endothelial cells (RAECs)

were isolated by scraping of rat aortic lumen in the presence of

medium 199 (M199) (Gibco Life Technologies, Carlsbad, CA,

USA) containing 5 mmol/L D-glucose, 10% new born calf serum,

10% fetal calf serum (FCS) (Gibco), 3.2 mmol/L L-glutamine and

100 U/mL penicillin-streptomycin (primary culture medium,

PCM) (Gibco), and cultured up to passage 3 (37uC, 5% CO2).

Twenty-four hours prior to experiments the incubation medium

was replaced by M199 containing 2% sera after two rinses with

200 mL in PBS (37uC). Cells were used in passage 3 for most of the

experiments. In addition, in some of transport assays confluent

freshly isolated cells (i.e., passage 0) or cells in passages 1 or 2 in

culture were also used.

L-Carnitine transport
Total transport of L-carnitine (TTC) was defined as the result of

the sum of the Na+-dependent (hereafter referred as TTCNa+
dep)

and Na+-independent (hereafter referred as TTCNa+
indep) compo-

nents plus a nonsaturable, lineal component of transport in the

range of L-carnitine used in this study (hereafter referred as

mN[Car], where m corresponds to slopes of lineal phases of TTC at

each L-carnitine concentrations [Car]) [28]. The TTC (0–

80 mmol/L L-carnitine, 3 mCi/mL L-[3H]carnitine (NEN,

Dreieich, FRG), 30 seconds, 37uC) was measured as previously

described for other amino acids in primary cultured endothelium

[28]. Briefly, TTC assays were performed in a Na+-containing

Krebs ((mmol/L): NaCl 131, KCl 5.6, NaHCO3 25, NaH2PO4 1,

Hepes 20, D-glucose 5, CaCl2 2.5, MgCl2 1 (pH 7.4, 37uC)) or in

Na+-free Krebs solution ((mmol/L) N-methyl-D-glucamine

(NMDG) 120, KCl 5.6, Hepes 20, D-glucose 5, CaCl2 2.5, MgCl2
1 (pH 7.4, 37uC)).

Initial rate for TTC, TTCNa+
dep and TTCNa+

indep components was

derived from slopes of lineal phases of 20 mmol/L L-carnitine

transport. Values for L-carnitine transport were adjusted to the

one phase exponential association equation considering the least

squares fit:

vi~Vm. 1{e{(k.t)
� �

where vi is initial velocity, Vm is mayor velocity at a given time (t)

and L-carnitine concentration, and e and k are constants.

Data for TTC, TTCNa+
dep and TTCNa+

indep components at initial

rates (i.e., linear uptake up to 30 seconds) was adjusted to the

Michaelis-Menten hyperbola plus a nonsaturable, lineal compo-

nent (mN[Car]) as described [28]:

v

Vmax
~

Car½ �
Kmz Car½ �z m. Car½ �ð Þ

where v is the initial reaction velocity relative to the maximal

velocity (Vmax) and apparent Michaelis-Menten parameter (Km) of

transport at a given L-carnitine concentration ([Car]), m represents

the slope of transport for the range of 0–80 mmol/L L-carnitine

and mN[Car] is the nonsaturable, lineal component of transport in

the range of L-carnitine used in this study [28]. Each assay was run

in duplicate with transport activity expressed as pmol/mg protein/

minute.

After subtracting the mN[Car] component from TTC the

remaining transport was defined as total overall saturable transport

of L-carnitine (TSC). Transport in Na+-free Krebs was considered as

the Na+-independent component of TSC (TSCNa+
indep) and the Na+-

component (TSCNa+
dep) was derived from:

TSCNaz
dep~TSC{TSCNaz

indep
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The kinetic parameters Vmax and apparent Km for the TSC,
TSCNa+

dep or TSCNa+
indep components were estimating by fitting the

data to the single Michaelis-Menten asymptotic hyperbola

equation:

v

Vmax
~

Car½ �
Kmz Car½ �

Cells were exposed to PCM 2% sera for a period of 2 hours

before the transport assays were performed. Cell viability was

assayed by Trypan blue exclusion and was not significantly altered

(,96% of viable cells) in any experimental condition in this study.

Rinsing the monolayers with ice-cold Krebs with or without Na+

terminated the tracer uptake. Radioactivity in formic acid cell

digests was determined by liquid scintillation counting in an

automated low activity liquid scintillation analyzer (Tri-Carb

2810TR, PerkinElmer, Santa Clara, CA, USA) with efficiency

estimated by converting counts to disintegrations per minute

(d.p.m.) [28]. Uptake of L-[3H]carnitine was corrected for its

extracellular trapping by measuring the accumulation of the non-

transportable D-[14C]mannitol (1 mCi/mL) (PerkinElmer) in the

extracellular space by:

3Hin~
3Hsample{

14Csample.14Cst

3Hst

where 3Hin is the L-[3H]carnitine associated to the whole cell

extracts, 3Hsample and 14Csample are total L-[3H]carnitine and D-

[14C]mannitol, respectively, for each sample analysed in the

scintillation counter, and 3Hst and 14Cst are d.p.m. for standards of

L-[3H]carnitine and D-[14C]mannitol, respectively.

The relative contribution of the hypertension exhibited by SHR

to the saturable L-carnitine kinetic parameters (1/F) was estimated

from the maximal transport capacity (Vmax/Km) values for TSC by:

1
WKY=SHRF

~
WKY Km.SHRVmax

WKY Vmax.SHRKm

where WKYVmax and WKYKm are the kinetics parameters for TSC in

cells from WKY rats, and SHRVmax and SHRKm are kinetics

parameters of transport in cells from SHR. The relative

contribution of the TSCNa+
dep or TSCNa+

indep components to TSC

in SHR or WKY rats was estimated from:

1
TSC=X F

~
TSCKm.X Vmax

TSCVmmax.X Km

where X represents the TSCNa+
dep or TSCNa+

indep components for

the kinetics parameters Vmax and Km of transport compared with

TSC values. The relative contribution of the TSCNa+
dep transport

compared with the TSCNa+
indep component to L-carnitine transport

in SHR or WKY rats was estimated from:

1

Naz
dep

=Naz
indep F

~

Naz
dep Km.

Naz
indep Vmax

Naz
dep Vmax.

Naz
indep Km

Extracellular pH dependency
To assay the effect of extracellular pH (pHo) on TSC, TSCNa+

dep

or TSCNa+
indep components of L-carnitine transport (20 mmol/L L-

carnitine, 3 mCi/mL L-[3H]carnitine, 30 seconds, 37uC) the cells

were incubated in Na+-containing or Na+-free Krebs adjusted to a

final pHo of 5.5, 6.5, 7.5 or 8.5 as described [20]. The pHo in the

Na+-containing Krebs solution was adjusted with 1 N HCl or 1 N

NaOH, while the Na+-free Krebs solution was adjusted with 1 N

HCl or 1 N KOH. The pHo values were monitored with a

pHmeter (Oakton Instrument, Vernon Hills, IL, USA) and tracer

uptake was terminated as above.

Isolation of total RNA and reverse transcription
Total RNA was isolated using the Trizol reagent (Invitrogen,

Carlsbad, CA, USA). RNA quality and integrity were insured by

gel visualization and spectrophotometric analysis (OD260/280), and

RNA concentration was determined at 260 nm. Aliquots (1 mg) of

total RNA were reversed transcribed into cDNA as described [28].

RT-PCR
Experiments were performed using a Light Cycler 480

Detection System (Roche Diagnostic, Barcelona, Spain) in a

reaction mix containing 0.5 mmol/L primers and master mix

provided in the brilliant SYBR green qPCR Master Mix

(Stratagene, La Jolla, CA, USA). SecureStart Taq DNA polymer-

ase was activated (15 minutes, 95uC), and assays included a 95uC
denaturation (15 seconds), annealing (20 seconds) at 54uC, and

extension (10 seconds) at 72uC (rOctn1, rOctn2 and GAPDH).

Product melting temperature values were 86uC (rOctn1), 86uC
(rOctn2) and 85uC (GAPDH). Oligonucleotide primers: rOctn1

(sense) 59-TGATAGCCTTCCTGGGCGATTGG-39, rOctn1

(anti-sense) 59-AAGGAGCCACAGAGAACGCCTAC-39, rOctn2

(sense) 59-AGGAGCCCATCAGCACACCCACG-39, rOctn2 (an-

ti-sense) 59-GACGAAGGACGGACGACAGGTGC-39, GAPDH

(sense) 59-GCCAAAAGGGTCATCATCTCCGC-39, GAPDH

(anti-sense) 59-GGATGACCTTGCCCACAGCCTTG-39.

The relative mRNA level in each group was estimated from the

22DDCT method [29]. Data were analyzed using the Light Cycler

480 SW 1.5 relative quantification (delta-delta-Ct) study software

(Roche Diagnostic, Barcelona, Spain) and gene expression levels

were normalized to GAPDH and given as relative fold change

[30]. The GAPDH mRNA level was not significantly altered

(P.0.05, n = 15) in all experimental conditions used in this study

(not shown).

Rat aorta reactivity
Ring segments of 2–4 mm in length were dissected from rat

aorta in cold (4uC) PBS solution. Vessel rings were mounted in a

myograph (610M Multiwire Myograph System, Danish Myo

Technology A/S, Denmark) for isometric force measurements in a

Krebs physiological solution ((mmol/L): NaCl 118.5, KCl 4.7,

NaHCO3 25, MgSO4 1.2, KH2PO4 1.2, CaCl2 2.5, D-glucose 5.5,

300 mmol/L L-arginine, pH 7.4). Artery rings were maintained at

37uC and constantly bubbled with a mixture of 95% O2/5% CO2.

The optimal diameter for each vessel was adjusted through the

determination of the maximal active response evoked by

62.5 mmol/L KCl [28]. Isometric force was measured in response

to calcitonine gene related peptide (CGRP, 0.1–100 nmol/L, 5

minutes) (Peptides International, Inc., KY, USA) in 32.5 mmol/L

KCl preconstricted vessels, in the absence or presence of 20 mmol/

L L-carnitine (30 minutes). In some artery rings, the endothelium

was removed by gentle abrasion of the intimal surface. Successful

removal of this cell layer was determined by a reduction in the

Reduced L-Carnitine Transport in Hypertension
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vasodilatation to CGRP. Changes in isometric tension were

recorded using the software LabChart (LabChart 7 for Windows,

ADInstruments, Australia) coupled to a PowerLab (PowerLab 8/

30 Data Acquisition System, ADIntruments, Australia). The tissue

responses are as a percentage of maximal contraction induced by

62.5 mM KCl.

Statistical analysis
Values are mean 6 SEM, where n indicates the number of

different cell cultures (3–4 replicates). Data reported in this study

describe a normal standard distribution and comparison between

two or more than two groups were performed by means of

Student’s unpaired t-test and analysis of variance (2-way

ANOVA), respectively. If the ANOVA demonstrated a significant

interaction between variables, post hoc analyses were performed

by the multiple-comparison Bonferroni correction test. The

statistical software GraphPad Instat 3.0b and Graphpad Prism

6.0d (GraphPad Software Inc., San Diego, CA, USA) were used

for data analysis. P,0.05 was considered statistically significant.

Results

Overall transport of L-carnitine
The TTC for 20 mmol/L L-carnitine was lower (4468%) in

RAECs from SHR compared with WKY rats (Fig. 1a). TTC

exhibited a TTCNa+
dep and a TTCNa+

indep component in cells from

both SHR and WKY rats. However, in cells from WKY rats the

contribution of the TTCNa+
dep (5266%) and TTCNa+

indep (6067%)

components to the TTC were similar (P.0.05), whereas, TTC in

cells from SHR resulted from a major contribution of the
TTCNa+

indep (8466%) compared with the TTCNa+
dep (2565%)

component of transport (Fig. 1a). Cells in passage 0 (Fig. 1b), 1

(Fig. 1c) or 2 (Fig. 1d) exhibited similar changes in L-carnitine

transport compared with cells in passage 3 (Fig. 1a).

Figure 1. Transport of L-carnitine in RAECs. Total, Na+-dependent (Na+
dep) and Na+-independent (Na+

indep) L-carnitine transport (20 mmol/L,
3 mCi/mL L-[3H]carnitine, 30 seconds, 37uC) in RAECs from WKY rats or SHR. Transport was assayed in RAECs in passage 3 (P3) (a) and compared with
cells in passages 0 (P0) (b), 1 (P1) (c) or 2 (P2) (d). *P,0.05 versus all other values, {P,0.05 versus corresponding Na+

dep values in SHR, `P,0.05 versus
all other values in SHR. Values are mean 6 SEM (n = 7–20).
doi:10.1371/journal.pone.0090339.g001
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The TTC was lineal up to 40 seconds incubation (Fig. 2a) with vi

values lower in SHR compared with WKY rats (Table 1). In cells

from either SHR or WKY rats the vi for the TTCNa+
indep compared

with the corresponding TTCNa+
dep component was higher for

20 mmol/L L-carnitine transport. However, the difference be-

tween the vi for the TTCNa+
indep compared with TTCNa+

dep

component was higher (2.160.3 fold) in cells from SHR compared

with WKY rats (Fig. 2b).

L-Carnitine transport kinetics
The TTC was semisaturable in RAECs from either SHR or

WKY rats (Fig. 3a,b). The KD value for TTC was similar to that for

the TTCNa+
indep component of transport in cells from WKY rats;

however, the KD for TTCNa+
dep transport in cells from these animals

and all other KD values in SHR were negligible (Table 1). The
TTCNa+

dep and TTCNa+
indep components derived from TTC were

saturable in both groups of cells. The Eadie-Hofstee plot of TTC

data was best fitted by an exponential one phase decay equation

resulting in a non-linear plot in cells from WKY rats (Fig. 3c).

However, the TTCNa+
dep and TTCNa+

indep components derived from

TTC in WKY rats were linear (Fig. 3c), as were TTC, TTCNa+
dep

and TTCNa+
indep components of transport in SHR (Fig. 3d).

After subtracting the lineal, non-saturable component of

transport data (in the range of concentrations used in this study),

the saturable transport for each condition was obtained (Fig. 4a,b).

Cells from SHR exhibit reduced Vmax, but unaltered apparent Km

for TSC compared with cells from WKY rats (Table 1). The Vmax

for the TSCNa+
dep, but not for TSCNa+

indep components of transport

was reduced in cells from SHR compared with the corresponding

values in WKY rats. In addition, the Vmax for the TSCNa+
indep

component was higher than TSCNa+
dep component of transport

only in SHR (Table 1). The Eadie-Hofstee plot of saturable

transport data was lineal for all experimental conditions (Fig. 4c,d).

The Vmax/Km values for sturable transport and the Na+
dep

component were lower in SHR compared with WKY rats, and

the value for the TSCNa+
dep component was lower than the

TSCNa+
indep component of transport in cells from SHR or WKY

rats (Table 1).

Figure 2. Initial velocities for total transport of L-carnitine. (a)
Initial velocity (ni) for total transport of L-carnitine (Total), and the Na+-
dependent (Na+

dep) and Na+-independent (Na+
indep) transport compo-

nents (20 mmol/L L-carnitine, 3 mCi/mL L-[3H]carnitine, 37uC) in RAECs
cultured from WKY rats or SHR. (b) Difference between the vi (Dvi) for
Na+

indep and Na+
dep components of transport in WKY rats or SHR.

*P,0.05 versus WKY. Values are mean 6 SEM (n = 15).
doi:10.1371/journal.pone.0090339.g002

Table 1. Kinetic parameters for transport of L-carnitine in rat aortic endothelial cells.

L-Carnitine transport

WKY SHR

Total Na+
dep Na+

indep Total Na+
dep Na+

indep

TTC

vi 0.00760.0001 0.00360.002 0.00460.0003{ 0.00460.0001* 0.00160.0001* 0.00360.0001{

KD 0.001660.0002 ,10213 0.001360.0013 ,10213 ,10215 ,10214

TSC

Vmax 0.8460.2 0.4260.06 0.4660.2 0.5960.07* 0.2060.03* 0.3260.08{

Km 2869 46619 2164 3068 31611 22616

Vmax/Km 0.03060.008 0.00960.002 0.02260.009{ 0.02060.004* 0.00660.002* 0.01560.007{

Total (TTC) and saturable (TSC) transport of L-carnitine and the Na+-dependent (Na+
dep) and Na+-independent (Na+

indep) components of transport (0–80 mmol/L L-
carnitine, 3 mCi/mL L-[3H]carnitine, 30 seconds, 37uC, pH 7.4) were measured in cultured (passage 2) rat aortic endothelial cells (RAECs) from normotensive (WKY) or
spontaneously hypertensive (SHR) rats as described in Methods. The initial velocity (vi) was measured for 20 mmol/L L-carnitine up to 30 seconds. vi, initial velocity
(pmol/mg protein/second); Vmax, maximal velocity (pmol/mg protein/minute); Km, apparent Michaelis-Menten constant (mmol/L); Vmax/Km, maximal transport capacity
(pmol/mg protein/minute/(mmol/L)); KD, lineal, non-saturable transport in the range of L-carnitine concentrations used in this study (pmol/mg protein/minute/(mmol/L)).
*P,0.05 versus corresponding values in WKY, {P,0.05 versus corresponding values for Na+

dep in SHR or WKY rats. Values are mean 6 SEM (n = 15).
doi:10.1371/journal.pone.0090339.t001
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Expression of rOctn1 and rOctn2 mRNA
The relative expression of rOctn2 was higher than rOctn1

mRNA in RAECs from SHR or WKY rats (Fig. 5). The relative

mRNA expression of rOctn2 was largely lower in SHR when

compared with WKY; however, no differences were found in

mRNA expression of rOctn1 between cells from these animals.

Extracellular pH dependency on saturable L-carnitine
transport

Overall transport of L-carnitine was higher at pHo 8.5

compared with transport at pHo 7.4, but it was unaltered by

lower pHo values in cells from WKY rats (Fig. 6a). The TSCNa+
indep

component of transport at pHo 7.4 was higher than at pHo 8.5,

but lower than at acidic pHo values. However, the TSCNa+
dep

component of transport at pHo 7.4 was lower than at alkaline, but

higher than at acidic pHo. The half-maximal stimulatory effect

(SE50) of a change in the pHo on overall transport was higher than

the SE50 for the TSCNa+
indep (,0.26 pHo units of difference)

component (Table 2). A similar effect on TSC was seen for the half-

maximal inhibitory effect (IE50) of a change in the pHo on the
TSCNa+

dep (,0.53 pHo units of difference) component of transport

in cells from WKY rats (Table 2). In addition, the SE50 for
TSCNa+

indep was significantly different from the IE50 for TSCNa+
dep

values (,0.24 pHo units of difference) in these cells.

In RAECs from SHR, the TSC and the TSCNa+
indep component

of transport were lower at alkaline pHo compared with transport

at pHo 7.4 (Fig. 6b). However, the TSCNa+
dep component of

saturable transport was unaltered compared with values at

pHo 7.4 in these cell types. The IE50 values for overall and the
TSCNa+

indep component of L-carnitine transport (,0.05 pHo units

of difference) were not significantly different in cells from SHR

(Table 2). However, the alkalization required to reduce the overall

transport in cells from SHR was higher (,0.22 pHo units of

difference) compared with the alkalization required to increase the

transport in cells from WKY rats. In addition, the alkalization

required to reduce the TSCNa+
indep component of transport in cells

from SHR was higher (,0.93 pHo units of difference) compared

with cells from WKY rats.

Rat aorta reactivity
CGRP caused dilation of preconstricted aortic rings in both

group of animals (Fig. 6c). However, the half-maximal vasodilation

Figure 3. Total transport of L-carnitine kinetics. Total transport of L-carnitine (Total), and the Na+-dependent (Na+
dep) and Na+-independent

(Na+
indep) transport components (0–80 mmol/L L-carnitine, 3 mCi/mL L-[3H]carnitine, 30 seconds, 37uC) in RAECs cultures from WKY rats (a) or SHR (b).

The Eadie-Hofstee plots for transport data in shown for WKY rats (c) and SHR (d) from data in (a) and (b), respectively. Values are mean 6 SEM (n = 15).
doi:10.1371/journal.pone.0090339.g003
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(EC50) caused by CGRP was lower in vessels from SHR (EC50 =

9.560.3 nmol/L) compared with WKY (EC50 = 1.060.2 nmol/

L) rats. Supplementation with L-carnitine caused a reduction of

the EC50 for CGRP in vessels from SHR (EC50 = 1.960.3 nmol/

L), but did not alter (P.0.05) this parameter in vessels from WKY

rats (EC50 = 0.960.1 nmol/L). CGRP was ineffective in

endothelium-denuded rat aortic rings (Fig. 6d).

Discussion

We have characterized the kinetics of L-carnitine transport in

primary cultures of rat aortic endothelial cells (RAECs) from non-

hypertensive WKY rats and contrasted this information with cells

from spontaneously hypertensive rats (SHR). Total overall

transport of L-carnitine (TTC) was mediated by Na+-dependent

(TTCNa+
dep) and Na+-independent (TTCNa+

indep) components in-

creased by a lineal, nonsaturable mediated transport. A reduced

initial velocity for the TTC and TTCNa+
dep, but not the TTCNa+

indep

component was found in cells from SHR compared with non-

hypertensive WKY rats. The kinetics assays for saturable overall

transport of this amino acid (TSC) show that maximal transport

capacity (Vmax/Km) for L-carnitine is lower in cells from SHR

compared with WKY rats, a finding paralleled by reduced Vmax/

Km for the TSCNa+
dep, but not the TSCNa+

indep component. A

differential dependency of pHo for TSC, TSCNa+
dep and TSCNa+

indep

transport was seen in cells from SHR compared with WKY rats.

These results are the first demonstration that RAECs from SHR

exhibit a phenotype characterized by reduced L-carnitine

transport compared with cells from non-hypertensive rats. These

results are potentially useful for a better understanding of the

membrane transport mechanisms of L-carnitine in RAECs from

non-hypertensive WKY rats and SHR. Interestingly, a reduced

reactivity to an endothelium dependent vasodilator of the aortic

rings from SHR compared with WKY rats was seen, an effect that

was improved by supplementation of these vessels in vitro with L-

carnitine. However, vasodilation was absent in endothelium-

denuded aortic ring preparations. It is suggested that a reduced

uptake of L-carnitine by the endothelium could counteract the

reported beneficial vascular effects of L-carnitine supplementation

in subjects with hypertension.

Figure 4. Saturable transport of L-carnitine kinetics. Total saturable transport of L-carnitine (Total), and the Na+-dependent (Na+
dep) and Na+-

independent (Na+
indep) transport components (0–80 mmol/L L-carnitine, 3 mCi/mL L-[3H]carnitine, 30 seconds, 37uC) in RAECs cultures from WKY rats

(a) or SHR (b). The Eadie-Hofstee plots for transport data are shown for WKY rats (c) and SHR (d) from data in (a) and (b), respectively. Values are mean
6 SEM (n = 15).
doi:10.1371/journal.pone.0090339.g004
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L-Carnitine transport in normotensive rats
Several reports describe that the natural amino acid L-carnitine

could act by improving the high arterial blood pressure in patients

with essential hypertension [3,4] and in animal models of

hypertension [5,26]. These results complement the possibility that

in hypertension the membrane transport of this amino acid is

reduced, a phenomenon that is supported by studies showing a

correlation between increased L-carnitine plasma level and higher

blood pressure in adult men [31]. Plasma membrane transport of

L-carnitine is mediated by OCTNs in mammalian cells, and the

isotypes Octn1, Octn2 and Octn3 have been cloned from rats

[12,32]. Our results show that RAECs exhibit TTC mediated by at

least three different components (Na+-dependent (TTCNa+
dep), Na+-

independent (TTCNa+
indep) and lineal, nonsaturable transport) in the

range up to 80 mmol/L L-carnitine. These findings agree with the

basic characteristics described for Octn-like transport of this amino

acid in other cell types [33–35]. Since the Eadie-Hofstee

representation of the TTC data was not lineal, it is likely that at

least two or more transport systems acting in parallel [36,37] will

account for L-carnitine transport in RAECs from non-hyperten-

sive rats. In addition, since the TTCNa+
dep and TTCNa+

indep

components of transport were lineal in the Eadie-Hofstee plot,

either a single transport system or two or more transport systems

with similar kinetic parameters acting in parallel mediate the Na+-

dependent and the Na+-independent L-carnitine transport in this

cell type.

Our results also show that cells from WKY rats exhibit a TSC

resulting from a pronounced differential contribution of the
TSCNa+

dep and the TSCNa+
indep components when the relative Vmax/

Km for these components were compared. The relative contribu-

tion of the Vmax/Km for the TSCNa+
dep component to TSC is lower

(,30%) (from 1/TSC/Na+-depF = 0.30) compared with the

contribution accounted by the TSCNa+
indep component (,73%)

(1/TSC/Na+-indepF = 0.73). Thus, a Na+
indep component of L-

carnitine transport predominates in RAECs from non-hyperten-

sive WKY rats.

Octn1 is widely expressed in several tissues, including micro-

vascular endothelium from human heart [38], and mediates L-

carnitine transport via a Na+-independent mechanism [34,39]

with apparent Km values ranging from 2–200 mmol/L [13–15].

Since the results of our study show that the apparent Km for the
TSCNa+

dep and TSCNa+
indep components (Km = 21–46 mmol/L) was

in the range of values described for this membrane transporter

isoform in other cell types [35], the possibility that Octn1 was

responsible of the Na+-independent L-carnitine transport in

RAECs from WKY rats is supported. However, Octn2-mediated

transport of L-carnitine is described as a Na+-dependent transport

mechanism with higher affinity (Km = 2–20 mmol/L) compared to

Octn1 [16,18–22]. Octn2 is also expressed in other types of

endothelial cells, including human heart and brain capillaries

endothelium [23,40]; therefore Octn2 could also account for the

Na+-dependent transport of L-carnitine in RAECs. Interestingly,

since the plasma concentration of L-carnitine for WKY rats is

reported as 20–36 mmol/L [41] it is likely that the lower affinity

transport system Octn1 would play a preferential role compared

with Octn2, which is likely to be saturated at physiological L-

carnitine plasma concentrations, in maintaining the extracellular

physiological concentrations of this amino acid in these animals.

In the present study, both Octn1 and Octn2 mRNA expression

was detected in RAECs from WKY rats. Interestingly, Octn2

mRNA relative expression resulted to be ,31 fold higher

compared with Octn1 mRNA in these cells. Since the relative

contribution of the TSCNa+
dep component to the Vmax/Km for TSC

was ,30%, it is likely that not more than ,10 fold change in

Octn2 mRNA expression (estimated from the (Octn2 mRNA/

Octn1 mRNA)/(1/TSC/Na+-depF) ratio) could sustain a TSCNa+
dep

component for the TSC in RAECs. The remaining transport

mediated via a TSCNa+
indep component (,73%) could represents

the contribution of a Na+-independent transport activity derived

from Octn1 in this cell type. Interestingly, since the contribution

for the Na+-dependent Octn2 transport is reported as ,3 fold

higher than the transport detected in the absence of extracellular

Na+ in other cell types [42], an equivalent fractional contribution

for these components to L-carnitine transport in RAECs from

WKY rats could be expected. However, the latter seems unlikely

in this cell type since the relative contribution of the TSCNa+
dep

component to the Vmax/Km for TSC was ,30% (1/TSC/Na+-depF

= 0.3) compared with ,73% (1/TSC/Na+-indepF = 0.73) for the
TSCNa+

indep component. Thus, contrasting with other cell types

[35,42], these findings further support the possibility that the

Na+
indep component predominates (,2.4 fold) compared with the

Na+
dep component regarding their contribution to TSC. This could

be interpreted as a major contribution of Octn1 compared with

Octn2 to the saturable transport of L-carnitine in RAECs from

WKY rats.

L-Carnitine transport in RAECs from WKY rats was also

dependent on the pHo, a characteristic well described for Octn1

[13,32] and Octn2 [43]. Our results show that TSC was increased

by ,20% by alkalization of the extracellular medium, an effect

resulting from a combined increases in the TSCNa+
indep component

(,58%) and decreases in the TSCNa+
dep component (,29%). This

phenomenon could be due to a higher sensitivity to alkalization of

the TSCNa+
dep [(TSC SE50) minus (TSCNa+

dep IE50) = 0.26 units of

pHo] compared with the TSCNa+
indep [(TSC SE50) minus

(TSCNa+
indep IE50) = 0.50 units of pHo] components regarding

the change seen in TSC. Based in these findings, a higher

alkalization-dependent increase in the TSC could be reached

whether these two transport components were equally altered or

whether the TSCNa+
indep component was unaltered by this

environmental condition. Interestingly, the increase of TSC caused

by a change of 0.6 units of pHo in RAECs was ,3.3 fold the

increase reported for 150 mmol/L tetraethylammonium (TEA)

uptake in response to a similar change in pHo units in HEK293

cells expressing the human OCTN1 form [13]. However,

Figure 5. Expression of Octn1 and Octn2. The relative mRNA
expression level of Octn1 and Octn2 in RAECs cultures from WKY rats or
SHR was estimated from the 22DDCT method using the Light CyclerH
480 SW 1.5 relative quantification (delta-delta-Ct) study software as
described in Methods. Gene expression levels were normalized to
GAPDH mRNA level. *P,0.05 versus corresponding values for Octn2.
{P,0.02 versus corresponding values in SHR. Values are mean 6 SEM
(n = 15).
doi:10.1371/journal.pone.0090339.g005
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contrasting with these results a larger increase in the pHo value (1

unit of pHo) reduced overall transport of TEA in these cells [32].

Thus, it is likely that OCTNs-like transport is differentially

responsive to the degree of alkalization reached in HEK293 cells.

Interestingly, a change in ,0.4 units of pHo has been shown to

increase the activity of other membrane transport systems, such as

the sodium/proton exchanger isoform 1 in MDCK cells [44],

suggesting that modulation of Octn1/2 by a similar change in the

pHo in RAECs agree with what is reported in other cell types. On

the other hand, acidification of the extracellular pHo does not alter

TSC, a net effect that result from a proportional reduced TSCNa+
dep

and increased TSCNa+
indep transport components. Interestingly the

effect of extracellular acidification was similar for both compo-

nents, suggesting that these components are equally sensitive to

acidification in RAECs from WKY rats. Thus, acidification and

alkalization of extracellular medium results in a differential

modulation of L-carnitine transport in RAECs from non-

hypertensive rats.

Effect of spontaneous hypertension on L-carnitine
transport

Cells from SHR exhibit a semisaturable TTC unaffected by a

lineal, non-saturable component in the range of L-carnitine

concentrations used in this study. This data was best fitted to a

first-order regression line in an Eadie-Hofstee plot, suggesting that

one or more transport systems with apparent Km values in the

same range could mediate L-carnitine transport in RAECs from

SHR. The apparent Km values for L-carnitine transport by RAECs

in SHR were similar to values detected in non-hypertensive rats,

and within the range of the plasma L-carnitine concentration

reported in SHR (21–41 mmol/L) [41]. Thus, L-carnitine

transport via Octn1/2 could contribute to maintain the physio-

logical plasma concentration of this amino acid in SHR. Our

results also show that TTC is mainly mediated by a TTCNa+
indep

(,75%) with a minor contribution of TTCNa+
dep (,25%) compo-

nents. These findings agree with those obtained by contrasting the

relative Vmax/Km for these components with that for TSC. Since

Figure 6. Effect of extracellular pH on saturable transport of L-carnitine, and rat aorta reactivity. Total saturable transport of L-carnitine
(Total), and the Na+-dependent (Na+

dep) and Na+-independent (Na+
indep) transport components (20 mmol/L L-carnitine, 3 mCi/mL L-[3H]carnitine, 30

seconds, 37uC) in RAECs cultures from WKY rats (a) or SHR (b) exposed to culture medium with the pH adjusted to different values. (c) Relaxation of
32.5 mmol/L KCl preconstricted endothelium-intact aortic vessel rings (With endothelium) from WKY rats or SHR in response to increasing
concentrations of calcitonine gene related peptide (CGRP, 5 minutes), in the absence (-Car) or presence (+Car) of 20 mmol/L L-carnitine (30 minutes).
(d) Relaxation of endothelium-denuded aortic vessel rings (Without endothelium) to CGRP as in (c). *P,0.05 versus all other values for the
corresponding components. Values are mean 6 SEM (n = 4–10).
doi:10.1371/journal.pone.0090339.g006
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the relative contribution of the Vmax/Km for the TSCNa+
indep

component is higher (,75%) (1/TSC/Na+-indepF = 0.75) compared

with the contribution accounted by the TSCNa+
dep component

(,30%) (1/TSC/Na+-depF = 0.30), and considering that similar

findings were found for the vi values for these transport

components, it is suggested that RAECs from SHR exhibit

saturable transport of L-carnitine where the Na+-independent

transport predominates by ,2.5 fold compared with the Na+-

dependent. This result is ,2.1 fold higher compared with cells

from non-hypertensive rats supporting the possibility that hyper-

tension could associate with a higher requirement of Na+-

independent transport of L-carnitine via Octn1/2 activity in

RAECs. Thus, it is likely that a deficiency in the TSCNa+
dep

component results in RAECs dysfunction in SHR. This would not

be explained by a lower Vmax/Km of the TSCNa+
dep component,

since the relative contribution of this component to TSC in these

cells was similar to that in cells from non-hypertensive rat

((1/TSC/Na+-depF in WKY rats)/(1/TSC/Na+-depF in SHR = 1.01).

In addition, the relative contribution of the TSCNa+
dep component

compared with the TSCNa+
indep component to TSC in SHR is also

similar to non-hypertensive rats ((1/Na+-indep/Na+-depF in WKY

rats)/(1/Na+-indep/Na+-depF in SHR = 1.03). Thus, reduced overall

transport of L-carnitine in RAECs from SHR could be mainly due

to reduced expression of the Na+-dependent Octn2 and in a less

extend to a reduced expression of the Na+-independent Octn1

membrane transporters. In fact, the Octn2 mRNA expression in

cells from SHR is only 2.6 fold compared with Octn1 mRNA

expression, a value that is largely minor compared with the 31 fold

increase for this mRNA detected in cells from non-hypertensive

rats. Thus, a reduced Octn2 expression without alterations in the

Vmax/Km could account for the reduced TSCNa+
dep component of

L-carnitine transport in RAECs from SHR.

Interestingly, as found in cells from non-hypertensive rats, the

relative contribution of the TSCNa+
dep component to the Vmax/Km

for TSC was ,30%. Thus, a proportional change by Octn2

expression to (i.e., ,1.48 fold) would sustain the TSCNa+
dep

component of the saturable transport activity in RAECs from

SHR. Interestingly, this value is ,85% lower compared with the

potential requested change in Octn2 mRNA expression in cells

from non-hypertensive rats. Therefore, SHR is a pathological

condition that results in lower request of Octn2 mRNA expression

compared with RAECs from non-hypertensive rats. The results

also show that L-carnitine transport in RAECs from SHR was

dependent on the pHo, supporting the possibility that transport

was mediated by Octn1/2 in this cell type. In this case, alkalization

of the extracellular medium resulted in reduced TSC, which was

due to reduced Na+
indep component. This finding is different from

RAECs from non-hypertensive rats, suggesting that alkalization

could result in a differential down-regulation of L-carnitine

transport in RAECs from SHR compared with non-hypertensive

rats. However, since the Na+
indep component of transport was also

reduced in cells from non-hypertensive rats, it is likely that

sensitivity of this component to a change in the pHo is similar in

cells from SHR and WKY rats.

In conclusion, the kinetic parameters of L-carnitine transport in

RAECs from SHR and non-hypertensive WKY rats were

characterized. The overall saturable transport was mediated by

Na+
indep and Na+

dep components, with the latter being crucial in the

reduced maximal transport capacity detected in cells from SHR.

The kinetic parameters, pHo- and Na+-dependency of transport

suggest that Octn1 and Octn2 are likely responsible for membrane

transport of L-carnitine in endothelial cells from the aorta of SHR

and WKY rats. These results are the first characterizing the kinetic

parameters for the membrane transport mechanisms of L-

carnitine in rat aortic endothelium from non-hypertensive WKY

and spontaneously hypertensive rats. Furthermore, since (a) the

reactivity of aortic rings to the endothelium-dependent vasodilator

CGRP was reduced in preparations from SHR compared with

WKY rats, (b) L-carnitine supplementation in vitro restored CGRP

vasodilation to values in vessels from normotensive rats, and (c)

CGRP was ineffective in endothelium-denuded rat aortic rings, it

is suggested that restoration of a functional endothelium could

result from bioavailability of L-carnitine to the aorta endothelium

in the spontaneously hypertensive animals.
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L-Carnitine attenuates oxidative stress in hypertensive rats. J Nutr Biochem 18:

533–540.

10. Sharma S, Aramburo A, Rafikov R, Sun X, Kumar S, et al. (2013) L-Carnitine
preserves endothelial function in a lamb model of increased pulmonary blood

flow. Pediatr Res 74: 39–47.
11. Volek JS, Judelson DA, Silvestre R, Yamamoto LM, Spiering BA, et al. (2008)

Effects of carnitine supplementation on flow-mediated dilation and vascular

inflammatory responses to a high-fat meal in healthy young adults. Am J Cardiol
102: 1413–1417.

12. Tamai I (2013) Pharmacological and pathophysiological roles of carnitine/
organic cation transporters (OCTNs: SLC22A4, SLC22A5 and SLC22A21).

Biopharm Drug Dispos 34: 29–44.
13. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, et al. (1999) Novel

membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-

dependent transport of organic cations. J Pharmacol Exp Ther 289: 768–773.
14. Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, et al. (2005) Discovery

of the ergothioneine transporter. Proc Natl Acad Sci USA 102: 5256–5261.
15. Mo JX, Shi SJ, Zhang Q, Gong T, Sun X, et al. (2011) Synthesis, transport and

mechanism of a type I prodrug: L-carnitine ester of prednisolone. Mol Pharm 8:

1629–1640.
16. Tamai I, Ohashi R, Nezu JI, Sai Y, Kobayashi D, et al. (2000) Molecular and

functional characterization of organic cation/carnitine transporter family in
mice. J Biol Chem 275: 40064–40072.

17. Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, et al. (2002) Molecular
identification of a novel carnitine transporter specific to human testis. Insights

into the mechanism of carnitine recognition. J Biol Chem 277: 36262–36271.

18. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, et al. (1998) Molecular and
functional identification of sodium ion-dependent, high affinity human carnitine

transporter OCTN2. J Biol Chem 273: 20378–20382.
19. Seth P, Wu X, Huang W, Leibach FH, Ganapathy V (1999) Mutations in novel

organic cation transporter (OCTN2), an organic cation/carnitine transporter,

with differential effects on the organic cation transport function and the carnitine
transport function. J Biol Chem 274: 33388–33392.

20. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, et al. (1999) Functional
characteristics and tissue distribution pattern of organic cation transporter 2

(OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther 290:
1482–1492.

21. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, et al. (1999) Na+-dependent

carnitine transport by organic cation transporter (OCTN2): its pharmacological
and toxicological relevance. J Pharmacol Exp Ther 291: 778–784.

22. Ohashi R, Tamai I, Nezu J, Nikaido H, Hashimoto N, et al. (2001) Molecular
and physiological evidence for multifunctionality of carnitine/organic cation

transporter OCTN2. Mol Pharmacol 59: 358–366.

23. Okura T, Kato S, Deguchi Y (2013) Functional expression of organic cation/
carnitine transporter 2 (OCTN2/SLC22A5) in human brain capillary

endothelial cell line hCMEC/D3, a human blood-brain barrier model. Drug
Metab Pharmacokinet. doi: 10.2133/dmpk.DMPK-13-RG-058.

24. Herrera MD, Bueno R, De Sotomayor MA, Pérez-Guerrero C, Vázquez CM, et
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