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SUMMARY BK polyomavirus (BKV) causes frequent infections during childhood and
establishes persistent infections within renal tubular cells and the uroepithelium,
with minimal clinical implications. However, reactivation of BKV in immunocompro-
mised individuals following renal or hematopoietic stem cell transplantation may
cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric
stenosis, or hemorrhagic cystitis. Implementation of more potent immunosup-
pression and increased posttransplant surveillance has resulted in a higher incidence
of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and
our increasing knowledge about host-virus interactions has led to the development
of improved diagnostic tools and clinical management strategies. Currently, there
are no effective antiviral agents for BKV infection, and the mainstay of managing re-
activation is reduction of immunosuppression. Development of immune-based thera-
pies to combat BKV may provide new and exciting opportunities for the successful
treatment of BKV-associated complications.
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INTRODUCTION

BK polyomavirus (BKV) is a member of the Polyomaviridae family of double-stranded
DNA (dsDNA) viruses. Different members of the family infect different species of

mammals, primates, rodents, and birds. The list of human polyomaviruses has evolved
over the past 2 decades (Fig. 1). BKV was first isolated from an immunosuppressed renal
transplant recipient with ureteric stenosis in 1971 (1) and is named after the initials of
this individual (1, 2). BKV causes a common childhood infection without major clinical
sequelae, and �80% of adults are seropositive for BKV (3, 4). After primary infection,
BKV remains dormant and does not cause significant morbidity in healthy individuals
(5). Clinically significant reactivation of latent BKV occurs in some immunosuppressed
individuals, such as following HIV infection or transplantation (6). Kidney transplant
recipients (KTRs) comprise the patient population that most frequently experiences
complications of BKV reactivation, and a median of 19.5% of KTRs experience BK
viremia posttransplantation. A proportion of these recipients will go on to develop
BKV-associated nephropathy (BKVAN), which is associated with a significant risk of
allograft loss (6–8). In addition, hemorrhagic cystitis (HC) is a well-recognized BKV-
associated complication in hematopoietic stem cell transplant (HSCT) recipients (9).

EPIDEMIOLOGY AND TISSUE TROPISM

Primary infection with BKV occurs during early childhood, and studies have shown
that 70% of children are infected with BKV by the age of 10 years; however, the route
of transmission remains unclear (4). The primary mode of transmission is speculated to
be via a respiratory route, as supported by evidence of BKV infection in the respiratory
tract and tonsils of children; however, other routes of transmission are also proposed
(Table 1). Primary infection is usually asymptomatic or, rarely, causes a mild respiratory
illness (10). It has been suggested that BKV enters the bloodstream via infected tonsillar
tissue, thereby infecting peripheral blood mononuclear cells and disseminating virus to
secondary sites of infection, including the kidney (3). Following resolution of primary
infection, BKV persists primarily in kidney epithelial cells for life, with occasional
reactivation manifesting as asymptomatic viruria (11). BKV has also been found in
leukocytes, the brain, and lymph nodes, as evidenced by the presence of BKV DNA (3,
12). Viral shedding in urine is more common for immunocompromised patients than for
healthy individuals (13). The mechanism of viral persistence and the conditions that
lead to viral reactivation upon immunosuppression are still unclear.

VIRION STRUCTURE

Members of the Polyomaviridae family demonstrate structural similarity, with similar
capsid sizes, high levels of genetic homology, and comparable genome sizes. BKV has
a small, nonenveloped, icosahedral capsid with a diameter of 40 to 44 nm comprised
of the virus-encoded capsid proteins VP1, VP2, and VP3 (14) (Fig. 2). The capsid proteins
surround a single molecule of DNA complexed with histone proteins in the form of
chromatin chains. The capsid proteins are arranged in a T�7 icosahedral structure
containing 360 molecules of VP1 organized into 72 pentamers. Each pentamer is linked
to a single moiety of the minor capsid proteins, VP2 and VP3, internally (Fig. 2).
Therefore, VP1 is the only viral protein exposed on the outside of the virion and is
responsible for attachment of the virus to host cell receptors that aid in entry of virus
into the cell. In a recent study of BKV structure by use of cryo-electron microscopy,
Hurdiss et al. showed that the minor capsid proteins (VP2 and VP3) have discrete points
of contact with the histones and genomic DNA (Fig. 2) (15). They also proposed a model
in which the minor capsid proteins could act as a bridge between VP1 and the
chromatinized viral DNA; however, the significance of such contact with the genomic
DNA has yet to be studied.

MECHANISM OF CELL ENTRY

BKV entry into host cells is mediated via caveolae, unlike that of other polyomavi-
ruses, which typically use clathrin-mediated entry (Fig. 3). VP1 has a cleft between the
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�-strand C1 (BC1) and BC2 loops that can bind to �2-8-linked disialic acid motifs on
gangliosides GD1b and GT1b expressed on host cell membranes (16–19). Entry into the
cell is then driven by a caveola-mediated endocytic pathway (16, 20). Following
internalization, BKV is carried toward the endoplasmic reticulum by use of microtu-
bules, from which it follows the classical endocytic pathway for capsid uncoating (21,
22). VP2 and VP3 mediate the entry of BKV into the nucleus via importin after the
uncoating of VP1 (23–25). After entering the nucleus, the BKV genome remains
episomal in human cells, in contrast to the integration of the BKV genome into host
DNA of rodent cells, which leads to the development of tumors in rodents (26–28).
While little is known about the mechanism of integration of BKV DNA into rodent
genomic DNA leading to malignancy, it would be interesting to study the factors
involved in such transformation. These may provide insights into the involvement of
BKV in oncogenesis in humans, which is higly debated.

GENOMIC STRUCTURE AND REPLICATION

The BKV genome is approximately 5,300 bp long and contains genes coding for the
structural proteins (VP1, VP2, and VP3) and the viral replication proteins (large T antigen
[LTA], small T antigen [STA], and agnoprotein) and a noncoding control region (NCCR)
(Fig. 4). The length of the genome varies in individual variants due to the alterations in
the NCCR. The NCCR is a hypervariable region containing various binding sites for host
cellular regulatory factors, and hence it is also referred to as the hypervariable regula-
tory region (HVRR) (26, 29, 30). The open reading frame is situated in the center of the
genome such that replication can proceed in a bidirectional way (31) (Fig. 4). The early
coding regions are transcribed before the start of replication, promoting the expression
of LTA and STA. These antigens accumulate in the nucleus and help in the replication
of viral DNA (32, 33). During the viral DNA replication process, LTA forms a multimeric
complex which binds to the origin of replication and acts like a helicase to facilitate the
transcription of late coding regions (34, 35). LTA is also a key regulatory molecule
driving the host cell to S phase of the cell cycle by binding to the tumor suppressor
proteins Rb, p107, p130, and p53 (30, 36–38). Based on studies with simian virus 40
(SV40), STA is involved in viral replication, cell cycle progression, and transformation

FIG 1 Phylogenetic tree showing the distances of relationships between the human polyomaviruses
discovered to date.

TABLE 1 Route of transmission of BKV

Route of transmission Source of BKV identification Reference(s)

Respiratory Upper respiratory tract 10
Tonsils 10
Waldeyer’s ring 232

Fecal-oral BKV DNA in sewage 233
Blood transfusion Leukocytes 3
Transplacental Fetus 234–236
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(39–41). The late coding regions are expressed only after the onset of viral DNA
replication, as they code for structural proteins involved in viral packaging as well as the
agnoprotein (26). The viral capsid proteins, VP1, VP2, and VP3, are produced in the
cytoplasm and recruited into the nucleus by use of the nuclear localization signals
attached to the proteins. Once the capsid proteins enter the nucleus, viral assembly
occurs and the viral progenies accumulate in the nucleus (42, 43).

BKV GENOTYPES AND VARIANTS

BKV can be categorized into four genotypes based on sequence variation in the
genomic region of VP1 (44, 45). Serological studies indicate that BKV genotype I has the
highest prevalence in the human population, followed by genotype IV. Genotypes II
and III are found to infect only a minority of adults. BKV genotype I is further classified
into four subgroups: subgroups Ia, Ib1, Ib2, and Ic (46, 47). BKV genotype IV can be
further subgrouped into subgroups IVa1, IVa2, IVb1, IVb2, IVc1, and IVc2 (48). The
distribution pattern of each of the genotypes has been studied extensively. Genotype
I viruses are present worldwide, while genotype IV is found in northeastern Asia and
Europe (46–51). The clinical and immunological implications of infection with the
different genotypes of BKV are still unknown. Apart from the genotypes based on the
variation in the VP1 region, there are also two other forms of BKV due to the variation
in the NCCR, namely, archetype (ww) and rearranged (rr) variants. Archetypal BKV
contains a linear block of O-P-Q-R-S, where O represents the origin of replication and
P-Q-R-S represents promoters and regulatory regions of early and late coding regions
(52). Deletion and duplications in the NCCR pattern sequences occur due to the
continuous replication of the viral DNA during reactivation, leading to the generation
of the rearranged variant viruses (53). These genetic variants of BKV are commonly
found in individuals with BKV-associated diseases along with the archetypal BKV. While
preliminary studies have suggested that these variations and rearrangements are not
involved in the development of BKV-associated diseases (52, 54), more detailed studies
on the genetic variants of the NCCR in disease development are required. Furthermore,
it is also important to appreciate that BKV can persist in many tissues throughout the
body, and analysis of viral sequences from renal tissue and serum alone may miss
potential sources of pathogenic virus within other tissue reservoirs (e.g., the central
nervous system [CNS] and lymph nodes). Analysis of viral sequences from these tissues
may reveal novel BKV genotypes and variants which correlate wth disease develop-
ment.

FIG 2 Cryo-electron microscopy structure of BKV, showing an external view, minor capsid proteins, and genome
organization. (A) External view of the virion at a contour level of 0.022. The electron density maps were sharpened using
a negative B factor correction (B � �456 and �804 Å2). (B) View of a 40-Å-thick slab through the unsharpened/unmasked
virion map, shown at a contour level of 0.0034. Pyramidal density below each VP1 penton and two shells of electron
density adjacent to the inner capsid layer can be seen. The density within 6 Å of the fitted coordinates for SV40 VP1 is
colored gray. The remaining density is colored in a radial color scheme. Densities for VP2 and VP3 are colored blue and
green, and those for packaged dsDNA are yellow and pink. (C) Enlarged view of the pyramidal density beneath a single
VP1 penton of the virion, shown at a contour level of 0.0032. Strands of dsDNA wrapped around a human histone octamer
(PDB entry 1AOI) are shown, indicating that the two shells of density have comparable spacings. A discrete connective
density between the pyramidal density and internal shells is also apparent. (Adapted from reference 15 [published under
a Creative Commons {CC BY} license].)
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VIRAL PERSISTENCE

BKV establishes lifelong persistent infection in the host. It is still unclear whether BKV
stays latent in the host cell or maintains a low level of gene expression with persistent
infection. The mechanism of latency is well studied for herpesviruses, which has
highlighted the regulation of various genes controlling viral lytic replication (55). BKV
encodes microRNAs (miRNAs) similar to those of herpesviruses, which act as regulators
of viral replication. Recently, Broekema and Imperiale showed that a high level of
expression of miRNA complementary to the 3= end of the LTA mRNA is responsible for
control of BKV replication (Fig. 4) (56). Further studies have shown that miRNA expres-
sion suppresses the autoregulation of viral replication (57). While no other mechanism

FIG 3 Schematic outline of BKV entry into host cells. For caveola-mediated entry of BKV into host cells,
attachment of VP1 to the ganglioside receptors GD1 and GT1 initializes the internalization of BKV
through caveola formation. The caveola encapsulating the virus then translocates in the cytoplasm with
the help of microtubules. The virus then fuses with the endoplasmic reticulum (ER), where the VP1 layer
disassembles. The virus then enters the host nucleus and lies episomally. In the nucleus, the early coding
regions are transcribed first, which regulates the transcription of late coding regions.
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of latency has yet been reported, the evidence regarding the association of miRNA with
latency is promising and requires more detailed research.

IMMUNE RESPONSES TO BKV
Innate Immune Response

While a few studies have investigated the interaction of BKV and the innate immune
system, there are few data regarding the role that innate immune mediators play in
controlling BKV infection. Most studies have focused upon settings of viral reactivation
and disease (BKVAN) in KTRs. Womer and colleagues showed a role for dendritic cells
(DCs) in BKVAN, demonstrating a reduced number of DCs in the peripheral blood of
renal transplant recipients with BKVAN. Further studies demonstrated that patients
with fewer DCs before transplantation are at a higher risk of BKVAN (58). DCs also likely
play a critical role in promoting the induction of the adaptive immune response,
particularly the generation of BKV-specific T cells. Using a mouse model of BKVAN,
Drake and colleagues showed that an increased number of DCs in vivo correlated with
an enhanced magnitude of virus-specific CD8� T cells (59, 60). These studies strongly
suggest that DC activation likely plays an important role in priming protective immune
responses against BKV; however, the mechanisms of DC activation following BKV
encounter remain unclear. Unlike those of other polyomaviruses, the VP1 protein of
BKV does not induce strong maturation of DCs (61).

Natural killer (NK) cells are also likely to play a role in controlling BKV infection in
KTRs. Bohl and colleagues showed that the absence of HLA C7 from the donor or
recipient was associated with an increased risk of viremia (62). While the precise
mechanism for this association still remains unclear, more recent observations by
Trydzenskaya et al. proposed a role for killer cell immunoglobulin-like receptors (KIR) in

FIG 4 Genome stucture of BKV. The transcription of both early and late coding regions proceeds in a
bidirectional way from the origin of replication (ORI) within the noncoding control region (NCCR). The
transcriptional splicing regions are represented by dashed lines. The late coding regions encode
structural proteins (VP1, VP2, and VP3), while the early coding regions transcribe the tumorigenic
proteins (LTA and STA). The late coding regions also encode the nonimmunogenic agnoprotein. The
expression of miRNA complementary to the 3= end of LTA has been shown to be involved in replication
control of BKV.
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the immune defense against BKV. They found that patients with BKVAN had a small
number of activating KIR, in particular those of the KIR3DS1 genotype, in NK cells
compared to the control group (63). Recent studies showed that BKV immune evasion
strategies may be mediated via the inhibition of NK cell recognition. Bauman demon-
strated that BKV produces miRNAs which can suppress the expression of the stress-
induced ligand ULBP3, which is recognized by the NKG2D receptor on NK cells, thereby
avoiding NK cell-mediated cytotoxicity (64).

Other innate mediators have been shown to contribute to BKV control. Defensins
are key mediators of innate immunity, exhibiting antimicrobial activity against a wide
range of viruses, fungi, and bacteria. Dugan et al. showed that human � defensin 5
(HD5) inhibits binding of BKV to host cells by aggregating viruses, thereby blocking
binding of viruses to the cells (65). HD5 is commonly found in the urogenital tract,
which is also the resident site of BKV, and it was demonstrated that HD5 could
neutralize BKV in a serum-independent manner, suggesting that it may play an
important role in mediating asymptomatic reactivation of BKV in the urogenital tract.

Innate immune mediators also likely play a role in graft loss in KTRs with BKVAN.
BKVAN is associated with renal inflammation, the increased expression of interleukin-6
(IL-6), IL-8/CXCL8, RANTES/CCL5, MCP-1/CCL2, and IP-10/CXCL10 in kidney biopsy
specimens (66), and an upregulation of two proinflammatory genes, encoding pen-
traxin 3 (PTX3), a cytokine-inducible protein, and MICB, which interacts with NKG2D
receptors on NK cells during BKV infection in kidney proximal tubular cells (67).
Furthermore, it has been shown that the microenvironment due to BKV infection
promotes graft fibrosis in BKVAN patients, which is evidenced by the increased expres-
sion of matrix collagens, transforming growth factor beta (TGF-�), and MMP2 and -9, as
well as markers of epithelial-mesenchymal transformation (EMT), in BKVAN biopsy
specimens (68).

Adaptive Immune Response
Humoral response. Adaptive immune responses against viruses typically develop

soon after initial exposure to viral antigens. BKV is usually encountered early in
childhood, which induces BKV-specific neutralizing antibody responses. In a study of
healthy individuals, Egli and coworkers found BKV-specific IgG antibodies in 87% (87 of
100 individuals) of younger individuals (aged 20 to 29 years) and 71% (71 of 100
individuals) of older individuals (aged 50 to 59 years) (69). Similarly, Randhawa and
colleagues found that 80% (57 of 71 individuals) of kidney donors had IgG antibodies
and 22% (16 of 71 individuals) had IgA antibodies specific to BKV (70). Reports suggest
that the presence of BKV-specific antibodies alone does not provide protection against
BKV reactivation and associated diseases (71).

In most viral infections, antibodies serve as neutralizing agents by various mecha-
nisms, one of which is attachment of antibodies to viral receptors, thereby restricting
further infection by the virus. Mutations in viral receptors can cause escape from
antibody-mediated neutralization (72–74). Pastrana and colleagues recently showed
that certain BKV genotypes can escape neutralization from antibody raised against
another genotype due to variation in antibody receptor binding (75). The same group
had earlier postulated that KTRs who lack antibodies capable of neutralizing a wider
range of BKV serotypes are at greater risk of graft rejection (76). These results suggest
that developing cross-neutralizing antibodies that can act on different BKV genotypes
may be a potential strategy to restrict BKV infection before immunosuppression
therapy in KTRs. Uncontrolled replication of BKV in the kidney during BKVAN results in
an increase in the viral load in blood, which in turn can induce a higher humoral
response. Although BKV-specific antibody responses likely play an important role in
neutralizing circulating virus, antibody alone is unable to control persistent latent
infection (71). Similar to all persistent viral infections, the efficient control of latent viral
reactivation is most likely dependent upon the induction of stable antiviral memory T
cell responses.
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T cell responses. Recent studies have begun to elucidate the important role of T
cells in controlling BKV infection. It has been demonstrated that in KTRs, reconstitution
of BKV-specific T cells is associated with better control of viruria and viremia (8, 71,
77–81). These studies indicate that immune control is dependent on both CD4� and
CD8� T cells (82) and correlates with the frequency of polyfunctional BKV-specific T
cells (83). This suggests that monitoring the frequency of BKV-specific T cells following
transplantation may provide a strategy to predict the risk of viral reactivation and
BKVAN, as shown previously for T cell responses to human cytomegalovirus (CMV) in
transplant recipients (84). Analysis of the T cell responses from BKV-seropositive indi-
viduals has shown that BKV-specific T cell responses can be detected against all five BKV
proteins in both seropositive healthy individuals and transplant patients (77, 79–81,
85–88). T cells specific for VP1 and LTA are most frequently detected in BKV-infected
individuals (89, 90). While BKV-specific CD4� and CD8� T cells can be detected in
healthy individuals and in KTRs, it has been suggested that the T cell response to BKV
is mediated predominantly by CD4� T cells (87, 88, 91). Recent reports have shown that
CD4� T cells likely have a direct role in controlling BKV infection, mediated through the
expression of proinflammatory cytokines, including gamma interferon (IFN-�) and
tumor necrosis factor (TNF), and via the expression of the cytolytic molecule granzyme
B (92). These studies also suggest that CD4� T cells can control BKV reactivation even
in the absence of CD8� T cell immunity (92). More recently, the same group reported
that the frequency of CD4� T helper cells significantly increased before and after the
clearance phase, while cytolytic CD4� cells increased during the clearance phase (93).
They also reported that immunosuppressant (IS) drugs used to prevent graft rejection
in KT patients can cause a reduction in the expression of cytokines, such as IFN-� and
TNF, by BKV-specific T cells. Other studies of KTRs with active BKV replication showed
that CD8� T cells were predominantly LTA specific, while VP1 elicited a mainly CD4� T
cell response (81). Mueller and colleagues recently showed VP3 to be an antigenic
target eliciting both CD4� and CD8� T cell responses in BKVAN patients (87).

Recent studies have also begun to investigate the presence of BKV-specific T cells in
renal tissue and their association with BKVAN (94, 95). Zeng and colleagues tracked and
quantitated BKV-specific T cells expanded from peripheral blood in renal allograft
biopsy specimens with or without BKVAN (96). While T cell receptor analysis using
next-generation sequencing revealed the presence of virus-specific T cells in biopsy
specimens from patients with BK viremia or nephropathy, interestingly, these biopsy
specimens contained 7 to 8 times more alloreactive T cell clones than virus-specific T
cells. These observations suggest that the tissue injury during BKV-associated nephrop-
athy is mediated primarily by the influx of bystander secondary T cells triggered by
both alloreactive and virus-specific immunity.

One of the major roadblocks in studying BKV-specific T cells has been their low
precursor frequency in the peripheral blood of both healthy volunteers and KTRs (79).
Hence, most studies have used in vitro-expanded virus-specific T cells stimulated with
antigenic peptide pools or BKV lysate. Typically, overlapping peptide pools (OPP) of BKV
proteins have been used to stimulate T cells because BKV-specific T cell epitopes have
not been characterized comprehensively (87, 91). Trydzenskaya et al. demonstrated
that T cell stimulation using overlapping peptide pools of all five BKV antigens
improved the sensitivity compared to that with single-antigen stimulation (91). This
approach of using mixed peptide pools for BKV-specific T cell responses was also used
by Mutlu et al. to attain maximum sensitivity for the quantitation of BKV-reactive CD4�

T cells prior to or following transplantation (97).
A number of studies have identified potential CD4� and CD8� T cell determinants

from BKV, although thorough investigations in a large cohort of healthy donors and
kidney patients have not been undertaken (86, 88, 98–103). These early studies
identified BKV-specific CD8� T cell epitopes restricted through HLA A1, A2, A3, A24, B7,
and B8 (79, 86, 99, 101, 103, 104). A detailed list of CD8� T cell epitopes mapped from
BKV is presented in Table 2. More recently, Cioni and colleagues employed a combi-
nation of bioinformatics and an in vitro expansion strategy to predict 9-mer epitopes
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from the BKV early viral gene region (105). These epitopes were specifically mapped for
14 major HLA class I alleles prevalent in Europe and North America. Using this highly
innovative approach, Cioni et al. successfully expanded the list of BKV T cell epitopes
to at least 39, among which 21 epitopes were further confirmed by HLA peptide
streptamer staining (105). Sahoo et al. assessed genetic variability in sections of the BKV
genome coding for T cell epitopes, demonstrating very limited variability (less than 5%)
in a cohort of 65 samples (106). Cioni and colleagues demonstrated that some of the
epitopes they identified shared strong homology with JC polyomavirus (JCV) (105).
Similar observations have been seen in other studies investigating an overlap between
BKV and JCV immunity (90, 98, 99). These studies also imply that prior JCV infection may
induce T cell responses that cross-protect from BKV-associated diseases, and vice versa,
due to the high level of homology between both viruses. These observations have
defined the conserved nature of BKV immunity and its potential overlap with JCV,
providing a platform for the development of a standardized immune monitoring
protocol for BKV that may potentially be extended to include JCV. While this research
has led to the determination of a significant number of BKV-specific T cell epitopes, it
is imperative to expand these analyses to comprehensively map T cell epitopes within
all five antigenic proteins of BKV and to expand the HLA restriction to alleles which are
common in ethnic groups other than European and North American groups. This will

TABLE 2 List of HLA class I-restricted CD8� T cell epitopes mapped from BKV

Epitope
sequence Antigen HLA restriction

Amino
acid
positions

Tested in
healthy
controls

Tested in
transplant
recipients Reference(s)

MLTERFNHIL LTA HLA-A*02:01 362–370 Yes Yes 85
VIFDFLHCI LTA HLA-A*02:01 406–414 Yes Yes 85
FLHCIVFNV LTA HLA-A*02:01 410–418 Yes Yes 85
LLMWEAVTV VP1 HLA-A*02:01 108–116 Yes Yes 79
AITEVECFL VP1 HLA-A*02:01 44–52 Yes Yes 79
LLLIWFRPV LTA HLA-A*02:01 579–587 Yes yes 99, 103
LPLMRKAYL LTA HLA-B*07:02/B*08 27–35 Yes Yes 99, 103
CLLPKMDSV LTA HLA-A*0201 398–406 Yes No 99, 103
KLCTFSFLI LTA HLA-A*0201 216–224 Yes No 99, 103
RLDSEISMY LTA HLA-A*0101 604–612 Yes Yes 104
VSWKLITEY LTA HLA-A*0101 270–278 Yes Yes 104
YSALTRDPY LTA HLA-A*0101 235–243 Yes Yes 104
WSSSEVPTY LTA HLA-A*0101 77–85 Yes Yes 104
FLICKGVNK LTA HLA-A*0301 222–230 No Yes 104
ILYKKLMEK LTA HLA-A*0301 172–180 Yes Yes 104
SVKVNLEKK LTA HLA-A*0301 506–514 Yes Yes 104
RTLACFAVY LTA HLA-A*0301 156–164 Yes Yes 104
ACFAVYTTK LTA HLA-A*0301 159–167 Yes Yes 104
GVNKEYLLY LTA HLA-A*0301 227–235 No Yes 104
IVFNVPKRR LTA HLA-A*0301 414–422 Yes Yes 104
SAINNFCQK LTA HLA-A*0301 208–216 Yes Yes 104
AWLHCLLPK LTA HLA-A*0301 394–402 No Yes 104
AYLRKCKEF LTA HLA-A*2402 33–41 Yes Yes 104
PYHTIEESI LTA HLA-A*2402 242–250 Yes Yes 104
QYMAGVAWL LTA HLA-A*2402 388–396 Yes Yes 104
VFLLLGMYL LTA HLA-A*2402 287–295 No Yes 104
RYWLFKGPI LTA HLA-A*2402 422–430 No Yes 104
RTLACFAVY LTA HLA-A*0101 156–164 No Yes 105
GVNKEYLLY LTA HLA-A*01/A*11 227–235 No Yes 105
DVFLLLGMY LTA HLA-A*0101 286–294 No Yes 105
KLCTFSFLI LTA HLA-A*0201 216–224 No Yes 105
MYLEFQYNV LTA HLA-A*0201 293–301 No Yes 105
TLAAGLLDL LTA HLA-A*0201 436–444 No Yes 105
ILYKKLMEK LTA HLA-A*0301 172–180 No Yes 105
LLLGMYLEF LTA HLA-A*24/B*51 289–297 No Yes 105
LERAAWGNL LTA HLA-B*0702 19–27 No Yes 105
FPSDLHQFL LTA HLA-B*0702 140–148 No Yes 105
MLTERFNHIL LTA HLA-B*0801 362–370 No Yes 105
LLLIWFRPV LTA HLA-B*0801 579–587 No Yes 105
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help in developing effective immune monitoring tools for BKV-associated diseases,
particularly for regions with high rates of kidney transplantation outside Europe and
North America.

CLINICAL AND LABORATORY DIAGNOSIS OF BKV INFECTION

BKV predominantly causes disease in immunocompromised patients. The major
clinical manifestations are BKV-associated nephropathy (BKVAN) or ureteric stenosis in
KTRs and HC, which is typically seen only in HSCT recipients. Other, less common
clinical manifestations that have been linked to BKV infection include interstitial
pneumonitis and meningoencephalitis (107–116). BKV-associated central nervous sys-
tem infections are predominantly seen in patients who have an underlying immuno-
deficiency or comorbid illness, including HSCT or HIV infection. Clinical manifestations
in these patients include headache, confusion, ataxia, dizziness, paraplegia, and sei-
zures (114).

PCR-based viral load quantitation in the plasma, urine, or cerebrospinal fluid (for
CNS infection) is the standard clinical tool for monitoring BKV reactivation (117). Several
reports have shown that sustained viremia in the plasma of renal transplant patients is
associated with a higher risk of BKVAN development (118–121). Although qualitative
PCR is highly sensitive for detecting active viral replication, it has a relatively low
positive predictive value (PPV) (30 to 50%) for BKVAN (120, 121). Studies reporting
quantitative BKV PCR results demonstrate a positive correlation between higher viral
loads and an increased probability of developing BKVAN. For example, in a prospective
study of KTRs, Hirsch et al. found that all recipients with BKVAN had viral loads of
�7,700 copies/ml (121). Based on this, a threshold of 1 � 104 copies/ml of BKV has
been proposed as a threshold for improving the PPV, although the lack of a standard-
ized protocol for BKV PCR assays has created difficulty in directly comparing viral loads
between studies. However, the World Health Organization Expert Committee on Bio-
logical Standardization (ECBS) recently published an international standard for BKV
PCR-based assays, which will hopefully lead to harmonization of BKV loads between
laboratories (122).

More recently, measurement of BKV mRNA levels for the detection of active BKV
replication was reported (123), and a noninvasive method to detect BKV mRNA levels
in urine was shown to be highly specific and sensitive. The method showed 93.9%
specificity using 6.5 � 105 BKV VP1 mRNAs/ng RNA in urinary cells as a cutoff limit (123,
124). Though this mRNA-based method for detecting BKV replication is promising, this
method requires further validation as a tool for predicting patients who will develop
more severe features of BKV infection, such as BKVAN. Singh and colleagues recently
described a polyomavirus Haufen test as a noninvasive biomarker to predict BKVAN
(125, 126). Haufen is the term used to describe BKV aggregates in the urine; cast-like
three-dimensional BKV aggregates are detected using electron microscopy. This
method is reported to have a high positive predictive value (more than 90%) for BKVAN
(125). However, because the method has been published only as a single-center report,
it requires further validation, and the assay is not feasible for routine clinical practice
due to the cost and limited availability of electron microscopy.

BKV REACTIVATION IN KIDNEY TRANSPLANT RECIPIENTS

Evidence of BKV reactivation is frequently detected in kidney transplant recipients
receiving contemporary immunosuppressive regimens, as summarized in Table 3.
Although less common, there have also been reports of BKV reactivation and BKVAN
occurring in recipients of nonrenal solid organ transplants (127, 128). Viruria or detec-
tion of urinary decoy cells is the most sensitive marker of BKV reactivation, occurring in
23 to 73% of KTRs (Table 3). BK viremia affects 8 to 62% of KTRs, with the peak incidence
occurring at 3 to 6 months posttransplantation (95, 129), and the incidence of BKVAN
in the first year posttransplantation is reported to be in the range of 1 to 7% (Table 3).
The wide range of reported frequencies of BKV reactivation may be due to the
extensive variation in immunosuppressive regimens utilized at different transplant
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centers, as well as to differences in frequency of monitoring and assay sensitivity (130).
Clinically, BKV reactivation is asymptomatic, and if BKVAN occurs, this manifests as
deterioration in allograft function (118, 121, 131, 132). As a consequence, most clini-
cians now screen KTRs prospectively for BKV reactivation, either by monitoring for
decoy cells in urine or by quantitative PCR analysis of urine or peripheral blood for BKV
detection (Table 4) (133–135). A definitive diagnosis of BKVAN requires a kidney biopsy,
which is typically performed when BK viremia persistently exceeds 1 � 104 copies/ml

TABLE 3 Reported frequencies of BKV reactivation and BKVAN in kidney transplant recipientsa

Study author(s), yr (reference)
Initial immunosuppression
regimen

% of recipients with:

No. of
recipients

BK viruria/
decoy cells

BK
viremia

Biopsy-confirmed
BKVAN

Graft loss due
to BKVAN

Hirsch et al., 2002 (121) T, A, P or C, M, P 23 10 5 Nil 78
Brennan et al., 2005 (129, 161) ATG, T/C, M/A, P 35 12 Nil Nil 200
Bessollette-Bodin et al., 2005 (13) ATG/IL-2, T/C, P 57 29 Nil Nil 104
Drachenberg et al., 2007 (153) T, M, P 73 62 6 Nil 103
Dadhania et al., 2008 (237) ATG/IL-2, T, M, �P NR 31 7 Nil 120
Almeras et al., 2011 (159) ATG/IL-2, T/C/S, P NR 11 �1 �1 119
Chakera et al., 2011 (134) IL-2, T, A/M, P or AZM, T, M 18 8 1 Nil 313
Sood et al., 2012 (238) ATG/IL-2, T, M, P 17 27 2 Nil 240
Barbosa et al., 2013 (239) AZM/IL-2, R, IVIG, T, M, P NR 20 2 �1 187

ATG/IL-2, T/C, M, P NR 10 1 �1 284
Borni-Duval et al., 2013 (147) T/C, M, P 40 20 7 NR 240
Hirsch et al., 2013 (94) IL-2, T/C, M, P 40 23 NR NR 629
Schaub et al., 2010 (162) IL-2/ATG, T/C, M, P/S NR 19 6 Nil 203
Theodoropoulos et al., 2013 (152) AZM/IL-2, T, M, �P 38 12 5 1 666
Knoll et al., 2014 (194) IL-2/ATG, T/C, M, P NR 31 Nil Nil 154
3C Study Collaborative Group et al.,

2014 (151)
AZM, T, M NR 7 1 Nil 426
IL-2, T, M, P NR 3 2 Nil 426

Schwarz et al., 2016 (240) 40 29 10 1 214
Sawinksi et al., 2015 (241) ATG, T, M, P NR 17 2 Nil 785
Wunderink et al., 2017 (142) AZM/IL-2, T/C, M, P NR 27 3 Nil 407
aT, tacrolimus; C, cyclosporine; A, azathioprine; M, mycophenolate; S, sirolimus; P, prednisolone; AZM, alemtuzumab; ATG, thymoglobulin; IL-2, basiliximab/daclizumab;
R, rituximab; IVIG, intravenous immunoglobulin; NR, not reported.

TABLE 4 Diagnostic testing and prognostic values for BKV infection and disease

Diagnostic
method

Sensitivity for
detection of BKV
infection (%)

Specificity for
detection of BKV
infection (%)

Positive predictive
value (PPV) for
diagnosis of
BKVAN (%)

Negative predictive
value (NPV) for
diagnosis of
BKVAN (%) Comment(s) Reference(s)

Urine cytology
for decoy cells

�80 70–84 20–35 �95 Useful for determining BKV reactivation
but low PPV for BKVAN

120, 121,
242–244

Urine PCR �98 78 30–40 �95 Effective at detecting possible BKVAN
with BKV loads of �1 � 107 copies/ml

118, 120,
245, 246

Serum PCR 90–100 83–96 50–80 �95 Highly specific and sensitive for detecting
BKV reactivation; PPV for BKVAN
increases with a higher BKV load; a
cutoff of 1 � 104 copies/ml has been
suggested as a threshold for biopsy
specimens to exclude BKVAN

118, 120,
121, 243,
245, 246

Haufen detection
(electron
microscopy)

100 �95 �95 100 Higher reported PPV than that for any
other method, but the method is
expensive

125, 126

Histopathology �98 100 Kidney biopsy is the gold standard for
determining disease progression

140

Stage/class A: infection/cytopathic
changes, �25%; interstitial
inflammation/tubular atrophy/fibrosis,
�10%

94

Stage/class B: infection/cytopathic
changes, 11–50%; interstitial
inflammation/tubular atrophy/fibrosis,
�50%

Stage/class C: infection/cytopathic
changes, �50%; interstitial
inflammation/tubular atrophy/fibrosis,
�50
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or if there is evidence of allograft dysfunction. Histologically, viral cytopathic changes
affecting tubular epithelial cells are the key manifestation of BKVAN, characterized by
nuclear enlargement and basophilic viral inclusions (136). Typically, there is also
significant tubular cell injury and associated interstitial inflammation potentially leading
to misdiagnosis of acute cellular rejection, particularly during resolution of BKVAN,
when viral inclusions are less prominent (137). Persistent BKVAN eventually leads to
renal parenchymal scarring with progressive tubular atrophy and interstitial fibrosis
(136, 138, 139). The presence of BKV within renal tissue can be confirmed via immu-
nohistochemistry using antibodies reactive to the large T antigen of simian virus 40
(SV40), which cross-react with BKV (140). This helps to distinguish the interstitial
inflammatory changes associated with BKVAN from acute cellular rejection and is
pathognomic of BKV replication within the kidney. Classification of BKVAN into three
stages based on the severity of the histological findings has been proposed, since more
severe changes are associated with higher BKV viral loads and poorer allograft survival
(94, 138).

RISK FACTORS FOR BKV REACTIVATION

The frequencies of BKV reactivation and BKVAN after kidney transplantation vary
considerably in the published literature (Table 3). Several factors have been identified
that modify the risk of BKV reactivation in KTRs, although the overall degree of
immunosuppression is thought to be the single largest factor promoting BKV reacti-
vation (Fig. 5). It has been shown that both donor BKV seropositivity and recipient BKV
seronegativity increase the risk of developing BKVAN and graft rejection, with a 10-fold
higher risk of BK viremia in KTRs in cases where the donor was seropositive and the
recipient seronegative than in cases where both were seronegative (141, 142). Recently,
a number of studies also showed that not just recipient seronegativity but also the
differential titers of BKV-specific antibodies are associated with the risk of viremia and
viruria in KTRs (141–144). Higher anti-BKV IgG titers in donors and lower anti-BKV IgG
titers in recipients increase the risk of early BK viremia (142, 143). These reports suggest

FIG 5 Identified risk factors for BKV infection and/or reactivation in transplant recipients. These risk factors are
associated with either the immunological, age, sex, or metabolic status of the recipient and donor or the
physiological/clinical profile of the transplanted organ. Each of these risk factors can directly or indirectly increase
the risk of BKV infection and/or reactivation.
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that increased vigilance for BKV in kidney donors may identify KTRs at greater risk for
BKV reactivation posttransplantation. Furthermore, Verghese et al. recently showed that
transplantation from donors with active BKV viruria increased the risk of BK viremia in
the recipients (145).

KTRs typically receive both induction and maintenance immunosuppression. Induc-
tion agents are potent immunosuppressive medications administered early after trans-
plantation, when the risk of acute rejection is highest (146). Maintenance immunosup-
pression is required indefinitely after transplantation to prevent chronic rejection
and promote long-term allograft survival. Induction therapy is typically a monoclonal
or polyclonal antibody that depletes host lymphocytes (thymoglobulin/ATG or alem-
tuzumab) or that targets CD25, the high-affinity IL-2 receptor alpha chain (basiliximab
and daclizumab). Administration of antithymocyte globulin is associated with a longer
duration of BK viremia as well as a higher incidence of BKVAN than those with induction
with an anti-CD25 monoclonal antibody (MAb) (147–149) or no induction (121). This is
consistent with the view that the major driver of BKV reactivation is immunosuppres-
sion, since lymphocyte-depleting therapy is significantly more immunosuppressive
than CD25 blockade, as reflected in a much lower incidence of acute rejection (150).
Similar findings were observed in the large 3C trial, which reported a significantly
higher rate of BK viremia in the first 6 months following kidney transplantation for
recipients randomized to alemtuzumab induction than for those receiving basiliximab
(hazard ratio, 1.92 [95% confidence interval, 1.06 to 3.45]; P � 0.03) (151). This is in
contrast to a smaller single-center retrospective series that did not identify alemtu-
zumab induction as a risk factor after adjustment for other potential confounders (152).

Maintenance immunosuppression for most KTRs consists of three immunosuppres-
sive medications, typically a calcineurin inhibitor (tacrolimus or cyclosporine), an anti-
proliferative agent (mycophenolate or azathioprine), and a corticosteroid. Tacrolimus is
associated with lower acute rejection rates than those with cyclosporine and is there-
fore considered a more potent immunosuppressive agent. In keeping with this, several
studies suggest that tacrolimus is associated with a greater risk of BK viremia than that
with cyclosporine. The DIRECT trial was a prospective open-label randomized controlled
trial comparing tacrolimus to cyclosporine; all recipients received mycophenolate and
corticosteroids (94). The incidence of BK viremia at 6 months posttransplantation was
16.3% in the tacrolimus arm, compared to 10.6% in the cyclosporine arm. This positive
association between tacrolimus and BK viremia has been observed in other studies
(95, 121, 147), as well as in U.S. registry data (148). The combination of tacrolimus,
mycophenolate, and corticosteroids appears to confer a particularly high risk of BK
viremia compared to that with alternative regimens (147, 153, 154), and there is also a
positive correlation between greater exposure to corticosteroids and BK viremia (94,
121, 155). In contrast, BK viremia and BKVAN appear to be less common in patients
receiving regimens based on mTOR inhibitors (sirolimus or everolimus), which are
considered less potent immunosuppressive agents than calcineurin inhibitors (148, 156,
157). Taken together, the available data suggest that the risk of BKV reactivation is
associated with the net degree of immunosuppression rather than a specific effect of
particular immunosuppressive agents on BKV replication. Several other risk factors for
BKV reactivation have been reported (Fig. 5). Some of these (such as episodes of acute
rejection) are likely to be surrogate markers for greater exposure to immunosuppres-
sion.

THERAPEUTIC INTERVENTIONS

There are few controlled studies available to guide the management of BK viremia
and BKVAN in KTRs (158). The usual clinical approach upon identification of BK viremia
or BKVAN is gradual reduction of immunosuppression, guided by serial monitoring of
BK viremia by PCR (149, 159–162). Typical therapeutic strategies that have been
reported are discussed in Table 5. A reduction in immunosuppression risks precipitating
acute rejection, which can be challenging to distinguish histologically from resolving
BKVAN, as there is often persistent interstitial inflammation, while viral inclusions and
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SV40 immunohistochemistry may become negative (137). As a result, a long-term
consequence of modifying immunosuppression to treat BKV-associated disease may be
a higher incidence of chronic rejection, as suggested by one study reporting an excess
of de novo donor-specific anti-HLA antibody development in recipients with persistent
BK viremia (140).

Currently, there are no antiviral medications with strong evidence of clinical efficacy
against BKV. Nevertheless, multiple reports have described the use of agents with
potential anti-BKV activity in patients with BKVAN. In most cases, these agents have
been combined with immunosuppression reduction and have been reported from
uncontrolled retrospective observational studies, and therefore it is difficult to make
firm conclusions about their therapeutic efficacy. Various single-center case reports and
case series indicate a potential clinical benefit for cidofovir along with the reduction of
immunosuppression, but no randomized trial has been reported so far (163–166).
However, the clinical application of cidofovir is frequently limited by nephrotoxity.
Brincidofovir (CMX001) is an orally administered prodrug of cidofovir currently under-
going phase III clinical trials and is reported to have a lower incidence of nephrotoxicity
than that with cidofovir (167). Case reports have described successful outcomes for
KTRs and HSCT patients with BKVAN after therapy with brincidofovir (168, 169);
however, a clinical trial is needed to establish the efficacy and safety of this drug in
treating BKV-associated disease.

Leflunomide, an immunosuppressant agent that also has antiviral properties against
BKV in vitro (170), was utilized as a replacement agent in lieu of mycophenolate in
several case series (171–176). These studies indicate that leflunomide is associated with
a fall in BKV viral load, although it is unclear whether this reflects a reduction in overall
immunosuppression or a direct antiviral effect. Leflunomide is associated with a
number of significant adverse effects, including hepatitis, thrombotic microangiopathy,
hemolysis, and bone marrow suppression (171). The active metabolite of leflunomide
(known as teriflunomide or A771726) can be measured, and therapeutic monitoring of
this has been proposed to aid in effective dosing of leflunomide, with the aim of
minimizing toxicity (176). In a case series of 22 patients, achieving A771726 levels of 50
to 100 �g/ml was associated with reductions in BKV viral load during follow-up (175).
Further prospective controlled studies of leflunomide are needed to confirm the
efficacy and safety of this drug against BKV and associated disease (176, 177).

Intravenous immunoglobulin (IVIG) has been demonstrated to contain neutralizing
antibodies against BKV (178). Several case reports and case series have described the
use of IVIG as an adjunctive therapy for BKVAN (179–185); however, no controlled
studies have been reported. IVIG therapy may be particularly beneficial in individuals
with hypogammaglobulinemia, both with the aim of contributing passive anti-BKV
immunity and also because IVIG is immunomodulatory (186) and may help to prevent
allograft rejection in the context of reduced immunosuppression.

In vitro studies have demonstrated that fluoroquinolone antibiotics can inhibit BKV
or SV40 polyomavirus replication in vitro, and fluoroquinolones have therefore been
considered potential agents for controlling BKV replication (187–189). In vitro, the
inhibitory effect of fluoroquinolones appears to be mediated via both reduction of
large T antigen expression and inhibition of large T antigen helicase activity (187–189).
Retrospective analysis of a trial in which a fluoroquinolone was administered as
antibiotic prophylaxis at the time of kidney transplant found that fewer KTRs who
received the fluoroquinolone developed BK viremia, further suggesting a possible
benefit for these antibiotics in preventing BKV replication (190, 191). The combination
of ciprofloxacin and leflunomide was also reported to be successful in controlling BKV
replication in a single-center nonrandomized study (192). However, two subsequent
prospective randomized controlled studies of levofloxacin in KTRs did not demonstrate
a benefit with respect to reducing either the incidence or the level of BK viremia (193,
194). Overall, these data do not suggest that fluoroquinolones currently have a clinically
significant role in the management of BKV-related disease (94).

BKV reactivation is associated with a reduction in allograft survival in KTRs. In a U.S.
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registry study of over 42,000 KTRs, 3-year allograft survival was 79% for recipients who
required treatment for BKV, compared to 90% for BKV-negative patients (195). A
systematic review of therapy for BKV-associated complications in KTRs was published in
2010 (158). The rate of death-censored allograft loss for immunosuppression reduction
alone was 8/100 patient-years, and there was no evidence that addition of leflunomide
or cidofovir improved allograft survival (158). The management of BKV-associated
diseases varies from center to center, and there is a need for further randomized
controlled trials to define the optimal treatment strategy for KTRs with BKV reactivation.

CELLULAR IMMUNOTHERAPY

Reactivation of latent BKV is exacerbated by immunosuppression, presumably fol-
lowing failure of BKV-reactive T cells to control viral replication (196). Therefore,
adoptive transfer of primed BKV-reactive T cells may be an effective approach to
controlling BKV-associated disease. The use of T cells as a cellular therapy to restore
antiviral immunity in immunocompromised patients was first demonstrated by Riddell
et al. in the early 1990s (197). Over the past 2 decades, various research groups have
refined the process of adoptive T cell therapy for treating various chronic virus-
associated diseases (198–202). For the successful generation of virus-specific T cells, it
is necessary to identify the immunogenic antigens of the virus. The immunodominant
epitopes of herpesviruses, such as CMV and Epstein-Barr virus (EBV), have been well
defined, enabling researchers to successfully expand CMV- or EBV-specific T cells by
using synthetic viral peptides or overlapping peptide pools (203). More recently,
techniques have been developed to utilize major histocompatibility complex (MHC)
multimer (199, 204, 205) or IFN-� capture technology to allow rapid selection and
enrichment of virus-specific T cells (201, 206). Immunotherapeutic approaches to treat
BKV-associated diseases are still in their early stages. There are very limited data about
the immunodominant BKV epitopes for T cell priming. Blyth et al. recently reported the
use of overlapping peptide pools derived from all five BKV antigens to expand
BKV-specific human T cells (89). Functional characterization of the expanded T cell
population confirmed BKV reactivity, cytokine production, and in vitro cytotoxicity (89).
A pilot study published in 2014 reported the in vitro expansion of virus-reactive T cells
by use of overlapping peptide pools including antigens from EBV, CMV, adenovirus,
BKV, and human herpesvirus 6 (207). An alternative approach to generating virus-
specific T cell products, including BKV-reactive cells, is the use of an adenoviral vector
to express multiple viral proteins (208). Cell products generated using this protocol
were administered to 11 HSCT recipients, either prophylactically or in response to single
or multiple viral infections. Several of the study participants had active BKV replication
that improved following adoptive T cell transfer, with concurrent increases in the
frequency of circulating BKV-reactive T cells detected using an enzyme-linked immu-
nosorbent spot (ELISpot) assay. None of the participants experienced significant infu-
sion reactions or other adverse safety concerns following adoptive transfer (207). These
data suggest that adoptive transfer of BKV-reactive T cells has the potential to ame-
liorate BKV-associated pathology and may be a significant therapeutic advance in
patients with BKVAN or HC. Further investigation into the comprehensive determina-
tion of immunogenic T cell epitopes for BKV antigens and the optimization of T cell
expansion protocols should aid in the development of enhanced immunotherapeutic
approaches to treat BKV-associated diseases.

HEMORRHAGIC CYSTITIS

Hemorrhagic cystitis (HC) is associated with high morbidity in HSCT patients. The
association of BKV with HC was first detected in the 1980s, as evidenced by the presence
of high loads of BKV in the urine samples of HSCT recipients (209, 210). The frequency
of BKV-associated HC in HSCT recipients is about 10%, typically at approximately 2
weeks posttransplantation (211). BKV viruria is found in about 50% of bone marrow
transplant (BMT) recipients, and high levels of viruria are associated with a higher risk
of developing HC (212–214). The symptoms of HC include dysuria, urinary frequency,
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urinary urgency, suprapubic pain, and hematuria (211). A definitive diagnostic method
for the detection of BKV-associated HC in transplant recipients has not been identified.
The commonly used diagnostic approaches followed for BKV-associated diseases are
listed in Table 4. While immunocompetent individuals also periodically shed BKV in
urine, detection of urinary viral loads of 106 to 107 copies/ml and BK viremia of �104

copies/ml is associated with a higher risk of HC in transplant recipients (214, 215).
Therapeutic approaches to treat BKV-associated HC in HSCT and BMT recipients are not
well established. Approaches similar to those for the management of BKVAN have been
reported for patients with HC, including modification of immunosuppressive medica-
tions and the use of cidofovir, leflunomide, and fluoroquinolone antibiotics (164, 166,
175, 216, 217).

BKV AND CANCER

BKV has been linked to various cancers, including prostate cancer and urothelial
tumors (218–220), although whether BKV has a causal role in the development of
cancer is controversial. It has been suggested that BKV may be oncogenic due to the
expression of the early coding region-encoded proteins LTA and STA, which can initiate
or drive neoplastic transformation. T antigens are known to be prooncogenic due
to their ability to inactivate tumor suppressor proteins, such as p53 and pRb, leading
to increased cell proliferation. Therefore, binding of the polyomavirus LTA antigen to
wild-type p53 in infected cells may lead to interference with the cell cycle and increase
the risk of malignant transformation (221–223). In support of this hypothesis, BKV
LTA-p53 protein complexes have been detected in the cytoplasm of prostate cancer
tissue (224, 225). The presence of BKV LTA-p53 complexes is not sufficient to prove that
LTA is oncogenic but raises suspicion that BKV may be a risk factor for prostate cancer
development. In addition, STA has been shown to increase activation of the mitogen-
activated protein (MAP) kinase pathway, which may also augment cell proliferation and
transformation (226).

Various studies have shown that the BKV early coding regions can induce transfor-
mation in rodent and human cells. Trabanelli et al. showed that BKV T antigens caused
cellular transformation via chromosomal alteration when human fibroblasts were trans-
fected with BKV antigens (227). However, the mechanism through which BKV antigens
mediate clastogenic effects has not yet been elucidated fully. Further evidence sug-
gesting that BKV is oncogenic comes from animal studies in which inoculation of BKV
resulted in the development of tumors in rodents (27, 228). Recently, Kenan et al.
showed that oncogenesis requires integration of the BKV genome into the chromo-
some and demonstrated a possible mechanism of BKV DNA integration and lytic
infection (229). This is the only study showing integration of BKV DNA in tumor cells
and needs to be confirmed.

There have been reports of a higher prevalence of BKV DNA in precancerous and
early-stage cancer tissues than in healthy control tissues, possibly suggesting a “hit and
run” mechanism of carcinogenesis by BKV or that BKV infection can promote the early
stages of tumorigenesis (224, 225). There are also contradictory reports about the
presence of BKV DNA in prostate cancer specimens (230, 231). Novel approaches are
required in order to prove the role of BKV in cancer development. Whether BKV plays
an important role in human cancer development remains a topic of debate.

CONCLUSIONS

BKV infection is a common childhood infection that establishes permanent latency
within renal tubular and uroepithelial cells. BKV reactivation is common in immuno-
compromised individuals and causes significant morbidity, in particular BKVAN in KTRs
and hemorrhagic cystitis in hematopoietic stem cell recipients. No specific antiviral
therapy is available, and management typically consists of reducing immunosuppres-
sion with the aim of reconstituting effective BKV immune responses. BKVAN in kidney
transplant recipients is associated with poorer allograft survival, due either to progres-
sive BKV-associated damage or to rejection precipitated by a reduction in immunosup-
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pression. Studies of the immune response to BKV are limited but indicate that T cells
play a vital role in controlling BKV replication. There is a need for high-quality controlled
clinical studies to define the optimal treatment strategies following BKV reactivation.
Adoptive cell therapy using ex vivo-expanded BKV-reactive T cells is a novel therapeutic
approach that is currently in early clinical development.
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