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Abstract

Aliskiren is an oral antihypertensive medication that acts by directly inhibiting renin.

High levels of circulating renin and prorenin activate the pathological signaling path-

way of fibrosis. This drug also reduces oxidative stress. Thus, the aim of this system-

atic review is to analyze experimental studies that show the actions of aliskiren on

fibrosis. PubMed and LILACS databases were consulted using the keywords aliskiren

and fibrosis within the period between 2005 and 2017. Fifty-three articles were ana-

lyzed. In the heart, aliskiren attenuated remodeling, hypertrophy, inflammatory cyto-

kines, collagen deposition, and oxidative stress. In the kidneys, there was a reduction

in interstitial fibrosis, the infiltration of inflammatory cells, apoptosis, proteinuria, and

in the recruitment of macrophages. In diabetic models, an improvement in the albu-

min/creatinine relationship and in the insulin pathway in skeletal muscles was

observed; aliskiren was beneficial to pancreatic function and glucose tolerance. In the

liver, aliskiren reduced fibrosis, steatosis, inflammatory cytokines, and collagen depo-

sition. In the lung and peritoneal tissues, there was a reduction in fibrosis. Many stud-

ies have reported on the beneficial effects of aliskiren on endothelial function and

arterial rigidity. A reduction in fibrosis in different organs is cited by many authors,

which complies with the results found in this review. However, studies diverge on

the use of the drug in diabetic patients. Aliskiren has antifibrotic potential in several

experimental models, interfering with the levels of fibrogenic cytokines and oxidative

stress. Therefore, its use in diseases in which fibrosis plays an important pathophysio-

logical role is suggested.
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1 | INTRODUCTION

Aliskiren (ALI) was approved by the U.S. Food and Drug Administra-

tion (FDA) in 2007 as the first oral antihypertensive medication that

acts by directly inhibiting renin (Frampton & Curran, 2007; Wiggins &

Kelly, 2009). Different than other drugs that target the renin-

angiotensin-aldosterone system (RAAS), it acts on the system in such a

way that it directly inhibits renin, and, as a result, reduces blood pres-

sure (Azizi, Webb, Nussberger, & Hollenberg, 2006; Nussberger,

Wuerzner, Jensen, & Brunner, 2002). The drug is not metabolized by

the liver isoenzyme CYP3a4; therefore, there is little interaction with

other drugs (Vaidyanathan, Jarugula, Dieterich, Howard, & Dole, 2008).

This medication has been mentioned in many different studies

owing to the fact it reduces blood pressure and considerably protects

some organs as a consequence of this reduction (Abuelezzy,

Hendawy, & Osman, 2016). Moreover, it shows a great beneficial

antifibrotic potential in different models of fibrosis, including perito-

neal, renal, and cardiac fibrosis (Gross et al., 2011; Ke et al., 2010; Zhi

et al., 2013).

High levels of circulating renin and its precursor (prorenin) proba-

bly activate the pathological signaling pathway of fibrosis via stimula-

tion of the prorenin receptor, whose mechanism is completely

independent not only of the production of angiotensin II (Ang II), but

also of the stimulation of type I Ang II receptor. Thus, one of the pro-

fibrotic effects of renin (Ichihara et al., 2006; Nguyen, 2006), which is

attenuated by ALI, can be explained. In addition, ALI reduces

the expression of prorenin receptors (Ferri, Greco, Maiocchi, &

Corsini, 2011).

Transforming growth factor β1 (TGFβ1) is the most potent

fibrogenic cytokine, and it is expressed at high levels even at late

stages of lung fibrosis (Bonniaud et al., 2005; Broekelmann, Limper,

Colby, & Mcdonald, 1991). With the administration of ALI, it could be

observed that these levels are reduced. Both renin and prorenin are

capable of stimulating the production of TGF β1 via p42/p44

mitogen-activated protein (MAP) kinase, resulting in the positive regu-

lation of pro-fibrotic molecules, such as fibronectin and Type I

collagen (Huang et al., 2006). Cytokine stimulation such as TGF-β1,

produced by macrophages and other cells, makes fibroblasts synthe-

size fibers and achieve differentiation into myofibroblasts with the

resultant progression to interstitial fibrosis (Chevalier, Forbes, &

Thornhill, 2009; Chevalier, Thornhill, Forbes, & Kiley, 2010). Addition-

ally, macrophages are able to synthesize extracellular membrane pro-

teins, such as collagen and fibronectin (Nathan, 1987).

The literature reports that ALI has an antioxidant capacity. There-

fore, it provides protection against oxidative stress effects that may

result in the onset of fibrosis (Santuzzi et al., 2015; Virdis et al., 2012).

ALI also reduces fibrosis owing to the fact it decreases levels of

MMPs (metalloproteinases), which are proteases involved in the phys-

iopathology of fibrosis and abnormal remodeling of the extracellular

matrix (ECM) (Abuelezzy et al., 2016; Kunugi, Fukuda, Ishizaki, &

Yamanaka, 2001; Pardo & Selman, 2012).

The activity of metalloproteinases is catalyzed by a specific family

of inhibitors called tissue inhibitors of metalloproteinases (TIMPs). An

imbalance between MMPS and TIMPs triggers the fibrogenesis pro-

cess (Woessner, 1994). ALI is also known for its capacity to reduce

TIMP-6. (Figure 1).

Taking the beneficial antifibrotic effect of ALI into account,

according to the above data found in the literature, the aim of this

systematic review was to analyze those experimental studies that

demonstrated the effects of ALI on fibrosis.

2 | METHODS

The PubMed and LILACS databases were consulted using the key-

words #aliskiren and #fibrosis within the period between 2005 and

2017. Articles found between August 15, 2005 and October 29, 2017

were taken into consideration. A total of 66 articles were obtained

from PubMed, and their abstracts were analyzed. Within these 66 arti-

cles, 62 were also found on LILACS.

Exclusion criteria comprised the following: language in which the

article was written unknown by the reviewers (Czech); literature

F IGURE 1 Mechanisms of action of Aliskiren
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reviews; ALI unrelated to fibrosis; fibrosis not mentioned; ALI not

mentioned; fibrosis only mentioned in the introduction; lack of refer-

ences to ALI in the full-text article due to the fact they did not report

the effects of the drug on fibrosis. A total of 13 articles were

excluded, leaving 53 articles to be analyzed according to the scheme

as shown in Figure 2 were included in this review the articles that

studied the ALI's effect in experimental models, in English, published

between 2005 and 2017.

3 | RESULTS

For the sake of better understanding, the results were compiled and

divided into tables according to the experimental model used.

Table 1 shows experimental models of myocardial injury. In these

studies, remodeling and hypertrophy were attenuated and reductions

in inflammatory cytokines, collagen deposition, and oxidative stress

could be seen. There was less degeneration of myocytes and a reduc-

tion in interstitial and perivascular fibrosis. An improvement in cardiac

function was seen.

Table 2 refers to experimental models of renal injury, in which

reductions in collagen deposition, VEGF, α-SMA, inflammatory cyto-

kines, inflammatory cell infiltration, apoptosis, and macrophage

recruitment could be observed. There was also a decrease in

tubulointerstitial fibrosis, interstitial volume, hypertrophy, and pro-

teinuria as well as a normalization of interleukin status.

The effects of ALI in experimental diabetes models are reported in

Table 3. There was a reduction in matrix protein deposition, an

improvement in interstitial fibrosis and oxidative stress, a reduction in

metalloproteinase and fibronectin expression, in collagen deposition

and albuminemia as well as the promotion of an antisclerosis effect.

An improvement in albumin and creatinine levels could also be

observed. Additionally, there was an increase in the compliance of

heart chambers and a reduction in hypertrophy and cardiac apoptosis.

Beneficial effects on pancreatic function and glucose tolerance were

also reported, as well as an improvement in the insulin metabolic path-

way in skeletal muscles.

Table 4 shows the studies on ALI in experimental hepatic injury

models. There was a reduction in fibrosis, steatosis, inflammatory

cytokines, and collagen deposition. There was also an improvement in

liver function.

Table 5 shows the studies that evaluated the use of ALI in experi-

mental lung injury models. Reductions in fibrosis, collagen fibers, and

inflammatory cytokines could be observed.

Table 6 refers to studies on the use of ALI in experimental perito-

neal injury models. In these studies, it was noted that there was a

reduction in the expression of fibronectin, collagen, proapoptotic fac-

tors, metalloproteinases, and VEGF. Mesothelial cell damage was

prevented, and there was a decrease in inflammation, fibrosis, and

peritoneal thickness.

Finally, Table 7 shows the effect of ALI in experimental injury

models. There was tube dilation and a reduction in hypertrophy, pro-

teinuria, interstitial and perivascular fibrosis, albuminuria and inflam-

mation. ALI prevented glomerulosclerosis, pancreatic structural

changes, diastolic dysfunction, and cardiac hypertrophy. A decrease in

inflammatory cells and macrophage infiltration was observed.

4 | DISCUSSION

The renin-angiotensin-aldosterone system (RAAS) plays a fundamen-

tal role in arterial pressure (AP) regulation; therefore, drugs that target

the stages in the cascade, such as angiotensin-converting enzyme

inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), are vastly

used as antihypertensive agents. Renin is the first and highly regulated

step that limits the system, and its inhibition has been the objective of

pharmacotherapy for almost 60 years (Nicholls et al., 2013).

Many randomized control trials have shown significant results

when ALI in monotherapy is administered for the reduction of AP

(Danser et al., 2008; Gradman et al., 2005; Gradman et al., 2007;

Kushiro et al., 2006; Nussberger et al., 2002; Stanton, Jensen,

Nussberger, & O'brien, 2003; Strasser et al., 2007). Actually, such

effects were similar to those provided by losartan (Stanton et al.,

2003), valsartan (Gradman et al., 2007), irbesartan (Palatini et al.,

2010), and lisinopril (Danser et al., 2008), as well as a tolerability pro-

file similar to placebo.

F IGURE 2 Flowchart showing the screening and exclusion of
articles for the systematic review
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The AQUARIUS study, which analyzed the effects of the drug in

prehypertensive individuals with coronary atherosclerosis, concluded

that it did not offer any additional benefit to patients (Nicholls et al.,

2013). However, many studies reported beneficial effects of ALI in

regard to endothelial function and arterial rigidity (Bonadei et al.,

2014; Fukutomi, Hoshide, Mizuno, & Kario, 2014; Raptis et al., 2015).

Furthermore, it reduces ventricular mass according to the ALLAY

study, which revealed that ALI is as effective as losartan in the reduc-

tion of hypertrophied ventricular mass in hypertensive patients with

BMI >25 kg/m2 (Solomon et al., 2009). Myocardial thickness was

reduced, according to many articles that analyzed the effects of ALI

(Table 1) in cardiac experimental models (Campbell et al., 2011; De

Mello, 2015; Fischer et al., 2008; Takamura et al., 2016; Weng et al.,

2014; Yamada et al., 2016).

VEGF is a mediator of angiogenesis, which consists of vascular

expansion formed by new blood vessels (Carmeliet & Jain, 2011). The

formation of new vessels occurs under normal circumstances, such as

regeneration, but it is an important factor in many pathological pro-

cesses (Hoeben, Landuyt, & Highley, 2004). VEGFs have a wide range

of effects related to infarction, which are involved in the pathogenesis

TABLE 1 Results obtained from the use of aliskiren in experimental myocardial injury models

References Animal model Results/conclusions

Zhao et al., 2016 Mongrel dogs receiving high

and low doses.

The high-dose attenuated abnormal tissue more efficiently, but the

low-dose also protected from remodeling. It reduced TGF-β1, MEK1,

ERK1/2, IL-18, and TLR4.

Satoh et al., 2017 Beagle female dogs Suppression of increased left atrial volume and fibrosis. Reduction in

the upregulation of fibronectin, MCP-1, periostin, and type 3

collagen. Suppressive effect on interstitial fibrosis and myocyte

degeneration.

Sadek, Rashed, Bassam, & Saida,

2015

Sprague–Dawley albino mice The concentrations of Type I collagen and Type III collagen were

reduced.

Takamura et al., 2016 BALB mouse Reduction of the ratio heart to body weight, and thinned the wall of

the left ventricle. It attenuated the inflammatory cells infiltration and

myocardial fiber destruction. Reduced expression of the cardiac

genes IL-2, IFN-γ, TNF-α, and collagen Type I. Suppression of

proinflammatory cytokines and CD4 + T cell proliferation.

Yamada et al., 2016 dnNRSF-Tg mice or wild-type (WT) Reduction of left ventricular systolic and diastolic diameters and of

myocyte mean size. Decreased expression of TGFβ-1, TGFβ-3, Type I

collagen, fibronectin, TIMP, and MMP-2.

Weng et al., 2014 C57BL/6J mice in induced

hypertrophy overload

Reduction of TGF-β1 and α1 type 1 collagen. Attenuation of cardiac

hypertrophy and fibrosis.

Zhi et al., 2013 C57BL6 male mice with

hyperhomocysteinemia (Hhe)-

induced fibrosis

Reduction of perivascular and interstitial fibrosis, of the expression

COL1A1, COL1A2 and COL3A1. Direct effects on the cardiac

fibroblasts biology; normalization of diastolic function.

Whaley-Connell et al., 2012 Ren2 Sprague–Dawley rats There were no areas of organized collagen with the treatment.

Improved mechanisms related to metabolic signaling, myocardial

tissue, fibrosis, and hypertrophy.

De Mello, Rivera, Rabell, &

Gerena, 2013

Heterozygous TG rats (mRen-2) Decreased left ventricle final diastolic volume and its thickness, left

ventricular interstitium and perivascular fibrosis. Reduced

remodeling.

Ma et al., 2012 Sprague–Dawley rats with DOCA

(deoxycorticosterone)-induced

fibrosis

Improved myocardial fibrosis. Reduced the expression of ERK1/2,

PERK1/2, and MMP-9 and collagen production. Decreased Ang II

level, inhibition of ERK1/2 signaling pathway phosphorylation.

Whaley-Connell et al., 2008 Ren2 and SD rats NADPH oxidase activity was reduced, as did mitochondria. Decreased

perivascular fibrosis and abnormal intercalated discs.

Fischer et al., 2008 dTGRs (RCC ltd.) rats and

nontransgenic Sprague–Dawley

rats (SD).

Prevented cardiac hypertrophy, inflammation, fibrosis, and the long QT

segment. Normalization of ANP expression. Reduced Type I collagen

and fibronectin deposition, the expression of ED-1 and gap junction

Cx43 relocation.

Campbell et al., 2011 Female heterozygous rats (mRen-2)

27

Reduced fibrosis and cardiac hypertrophy. Protected against ischemia,

oxidative stress, inflammatory and hemodynamic damage.

De Mello, 2015 TGR(mRen2) 27 rats Improvement of cardiac function and remodeling reduction. Interstitial

and perivascular fibrosis were reduced.

Abbreviations: ANP, atrial natriuretic peptide; MEK1, mitogen-activated protein kinase; TLR4, toll-like receptor 4.
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of atherosclerosis, a common cause of cerebrovascular accident (CVA)

(Greenberg & Jin, 2013). Studies with ALI in which renal and perito-

neal tissues were analyzed, and the release of this mediator was

decreased (Ke et al., 2010; Prókai et al., 2016).

The use of ALI not only promoted a reduction in TGF-β1 in the

lung, liver, and peritoneum, it also reduced TGF-β1 urinary excretion.

TGF-β1 plays fundamental roles in the following processes:

modulation of cell growth, maturation and differentiation, the forma-

tion of ECM, homeostasis, plasticity of endothelial cells, immune regu-

lation, apoptosis, angiogenesis and cancer progression (Heldin,

Landström, & Moustakas, 2009; Ikushima & Miyazono, 2011; Moses &

Barcellos-Hoff, 2011; Parvani, Taylor, & Schiemann, 2011; Van

Meeteren & Ten Dijke, 2012). Its reduction in cardiac, renal, hepatic,

lung and peritoneal tissues and in diabetic animals treated with the

TABLE 2 Studies on the use of aliskiren in experimental kidney injury models

References Animal model Results/conclusions

Prókai et al., 2016 C57B16 mice-induced CNI nephropathy Prevented the damaging VEGF increase and collagen deposition.

Chung et al., 2017 C57BL/6J mice with UUO Significant decrease in tubulointerstitial fibrosis and ERK

phosphorylation. Reduction of Type IV collagen, α-SMA expression,

and prevention of Nox1 and Nox2 increase.

Bae et al., 2014 Male Sprague–Dawley rats with gentamicin

nephropathy.

Reduction of the ED-1 and iNOS proteins, renal expression in TNF-α
mRNA, IL-1β, IFN-γ, TGF-β1 (by inhibition of TNF-κB), α-SMA, ERK

1/2 and p38. Reduction of inflammatory cell infiltration. Attenuation

of fibrosis.

Sakuraya et al., 2014 Male Sprague Dawley rats with UUO Significant attenuation in tubulointerstitial damage after UUO. The

interstitial volume and number of ED-1 positive cells infiltration

decreased. Reduced expression of α-SMA, TGF-b1, OPN, and

MCP-1. Aliskiren has a significant but not complete protective action

on renal fibrosis.

Kavvadas et al., 2013 RenTg mice Decreased expression of F4/80. Return to normal values of tissue

adhesion molecules, tumor necrosis factor-a, monocyte

chemoattractant protein 1, SMAD1/5/8 phosphorylation levels.

Reduction of cell infiltration and collagen deposition (Types I and III),

α-smooth, plasminogen 1, TGF-β, connective tissue growth factor

(CTGF), MEC and atrial natriuretic peptide. It normalized the

upregulation levels of the factor induction of 1α and DNMT1

hypoxia, kidney injury molecule 1, proteinuria, hypertrophy, fibrosis

and inflammation. It increased the morphogenetic protein expression

of bones 4 and 7, resulting in phosphorylation and activation of

SMAD1/5/8 (anti-fibrotic). Positively regulated hepatocyte growth

factor.

Whaley-Connell et al.,

2013

Transgenic mice TG (mRen2) 27 (Ren2) and

Sprague–Dawley rats

Improvement in interstitial tubule fibrosis. Reduction in fibronectin and

collagen III.

Sun et al., 2012 Female B6 mice with renal artery

attachment

Reduced the atrophic effect of chronic renal ischemia. Reduction in

TGF-β1, CTGF, Type I collagen, collagen deposition, (P)RR mRNA

expression, klotho, fibrogenic cytokine production, apoptosis, and

renal fibrosis.

Choi et al., 2011 C57BL/6 mice with UUO Reduction in inflammatory cell infiltration, tubule epithelial cell damage,

macrophage recruitment, α-SMA and TGF-β expression. Preserved

tubular morphology. Improved renal inflammation and fibrosis.

Gross et al., 2011 COL4A3−/− mice Reduced proteinuria. Decrease in TGFβ1 and CTGF. Glomerular

architecture preservation, less mesangial expansion. Improvement in

glomerulosclerosis. Reduction in fibrosis.

Wu et al., 2010 Male Sprague–Dawley rats with ureter

attachment

Decreased levels of tubular dilatation, interstitial volume, collagen

deposition, and fibrosis. Reduction of α-SMA, collagen type IV, ERK,

Snail1 and TGF-β1 expression. Decreased macrophage ED-1

infiltration.

Baracho et al., 2017 Nephrectomized (3/4) rats Wistar Urinary levels of IL-1β, IL-6, TGF-β, and IL-10 were normalized without

altering TGF-β levels. Reduced glomerular and tubular damage,

inflammatory interstitial infiltrate, glomerular disorder, and

hypotrophy/abnormal tubular dilation with hyaline material in the

tubular lumen.

Abbreviations: UUO, unilateral ureteral obstruction; VEGF, vascular endothelial growth factor.
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drug is a beneficial effect (Aihara et al., 2013; Asker et al., 2015; Bae

et al., 2014; Baracho et al., 2017; Choi et al., 2011; Elrashidy, Asker, &

Mohamed, 2012; Gross et al., 2011; Kavvadas et al., 2013; Ke et al.,

2010; Kishina et al., 2014; Lee, Chan, Hsieh, Huang, & Lin, 2012;

Lizakowski et al., 2012; Sakuraya et al., 2014; Sun et al., 2012; Wang

et al., 2015; Weng et al., 2014; Wu et al., 2010; Yamada et al., 2016;

Zhao et al., 2016; Zhou, Liu, Cheung, & Huang, 2015).

The pathology resulting from the extracellular regulated kinase

(ERK) pathway dysfunction is better studied in mammals. The cascad-

ing signals result in protein synthesis, culminating in changes in cell

proliferation and survival (Chang, Steelman, & Lee, 2003; Dhillon,

Hagan, Rath, & Kolch, 2007; Scholl, Dumesic, & Khavari, 2005; Shaw &

Cantley, 2006; Yoon & Seger, 2006). If the signaling via this pathway

is deregulated, an increase in cell proliferation occurs along with an

extension of cell lifespan, which contributes to tumorigenesis (Chang

et al., 2003; Dhillon et al., 2007; Roberts & Der, 2007; Shaw & Can-

tley, 2006; Yoon & Seger, 2006). The direct renin inhibitor caused, as

one of its effects, a decrease in ERK phosphorylation in the heart,

kidneys, and liver as well as in experimental diabetes mellitus models

(Aihara et al., 2013; Bae et al., 2014; Chung et al., 2017; Furukawa

et al., 2013; Lee et al., 2012; Ma et al., 2012; Wu et al., 2010; Zhao

et al., 2016).

However, in 2011, the ALTITUDE study, which tested the use of

ALI in Type 2 diabetic patients, had to be interrupted due to cases of

renal dysfunction, hyperkalemia, and hypotension, with no additional

benefits, and a higher incidence of non-fatal CVA in comparison with

the placebo group (Mcmurray et al., 2012). Besides these adverse

effects, Parving et al. also mentioned cases of diarrhea, hypoglycemia,

and infarction. It could be observed that the albumin/creatinine ratio

was reduced by ALI in comparison with placebo, indicating a decrease

in microalbuminuria, a great benefit to diabetic patients (Parving,

Brenner, & Mcmurray, 2012). Similar effects were found by McMurray

et al. (Mcmurray et al., 2012). Interestingly, beneficial effects in exper-

imental diabetes models were found in this review, such as those on

pancreatic function and glucose tolerance, an improvement in insulin

signaling in skeletal muscles, as well as antisclerotic and antifibrotic

TABLE 3 Studies on the use of aliskiren in experimental diabetes models

References Animal model Results/conclusions

Zhou, et al. 2015 BKS.Cg-Dock7m +/+ Leprdb/J mice

homozygous

Reduction in glomerular matrix protein deposition, TGFβ1, PAI-1,
fibronectin, collagen α1 (IV) expression, and NADPH oxidase activity.

Erena et al., 2014 Male Sprague Dawley rats with diabetes -

nephropathy induced

Improvement in interstitial fibrosis.

Erena et al., 2014 KK/Ta Jcl mice and KK/Ta Jcl diabetic mice Reduction in MMP-2, MMP-9, TIMP-1, TIMP-2, fibronectin, collagen

Type IV, MCP-1, and (P)RR in the kidneys, as well as p-p38,

p-ERK1/2, and p-SAPK/JNK. It improved urinary levels of ACR and

renal fibrosis by improving inflammation. Reduced albuminemia.

Matavelli & Siragy, 2014 Sprague–Dawley male rats Reduction in fibronectin, renal 8-isoprostane, and fibrosis. Increased

NO-cGMP production.

Lizakowski et al., 2012 Humans aged 18–65 years, without diabetic

nephropathy

Reduced urinary excretion of TGF-β1. Antisclerosing effect.

Elrashidy, et al. 2012 Albino Wistar rats induced to develop

nephropathy

Reduced levels of creatinine, NO, TGF-β1 mRNA, and TIMP-2 mRNA.

Decreased collagen fibers deposition in cardiac tissue. Increased

extracellular matrix turnover. Regulation of the MMP-2/TIMP-2

system in cardiac tissue.

Connelly et al., 2011 Sprague–Dawley rats Reduced mRNA (P) RR expression, cardiac hypertrophy, and fibrosis.

Improvement in the compliance of the chambers.

Dong et al., 2010 Male db/db mice (C57BLKS/J-leprdb/

leprdb)

It improved cardiac and pancreatic damage, macrophage infiltration,

interstitial fibrosis, coronary artery thickness, and peri-coronary

fibrosis. Improved glucose tolerance. Cardiac superoxide reduction of

NADPH oxidase and reduction of p22phox. Attenuation of

interstitial and perivascular fibrosis.

Lastra et al., 2009 Ren2 transgenic mice and Sprague Dawley

rats

Reduced NADPH oxidase activity and perivascular fibrosis; the number

of mitochondria declined. Beneficial effect on insulin metabolic

signaling in skeletal muscles.

Singh, et al. 2008 Sprague Dawley rats with

streptozotocin-induced diabetes

It completely blocked the oxidative stress, protected against cardiac

apoptosis, and reduced fibrosis.

Kelly, et al. 2007 Heterozygous female mice (mRen-2) 27 Albuminuria, diffuse and nodular glomerulosclerosis, and fibrosis were

reduced.

Abbreviations: ACR, albumin creatinine ratio; PAI-1, plasminogen activator inhibitor-1; (P)RR, prorenin receptor; p-SAPK/JNK, phosphorylated

stress-activated protein kinase/Jun-terminal-amino kinase.
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effects (Table 3) (Connelly et al., 2011; Dong et al., 2010; Erena et al.,

2014; Kelly, Zhang, Moe, Naik, & Gilbert, 2007; Lastra et al., 2009;

Lizakowski et al., 2012; Matavelli & Siragy, 2014; Singh, Le, Khode,

Bazer, & Kumar, 2008).

Furthermore, the drug reduced MCP-1 concentrations in diabetic

models (Furukawa et al., 2013; Kishina et al., 2014; Sakuraya et al.,

2014; Satoh et al., 2017). MCP-1 attracts monocytes to inflammatory

sites of the vascular subendothelial space, initiating the migration of

these cells into the arterial wall and leading to the formation of foam

cells. Many studies have pointed to a significant correlation between

circulating MCP-1 and other traditional risk factors for atherosclerosis,

such as high-sensitivity C-reactive protein (hs-CRP) and fibrinogen

(De Lemos et al., 2003; Deo et al., 2004; Piemonti et al., 2009). High

concentrations of this molecule are also related to the complications

caused by atherosclerosis, like ischemic infarction, myocardial infarc-

tion, and cardiovascular mortality (Arakelyan et al., 2005; De Lemos

et al., 2003; Piemonti et al., 2009). The circulating MCP-1 concentra-

tion is increased in diabetic patients (Bláha et al., 2006; Nomura,

Shouzu, Omoto, Nishikawa, & Fukuhara, 2000; Piemonti et al., 2009;

Simeoni et al., 2004; Zietz et al., 2005), and it is greater in the vitreous

humor of patients with diabetic retinopathy, thus indicating its role in

the development of the disease, according to Mitamura et al. (2001).

Local production of MCP-1 has been reported as a contributor to the

development of advanced diabetic nephropathy due to the recruit-

ment and activation of monocytes/macrophages (Chow, Ozols,

Nikolic-Paterson, Atkins, & Tesch, 2004; Morii et al., 2003).

According to the ASTRONAUT study, patients who received ALI

had a higher rate of hyperkalemia, episodes of hypotension and wors-

ening in renal function (Gheorghiade et al., 2013). On the other hand,

some studies conducted by Persson et al. showed that ALI has anti-

proteinuric effects that became evident at different moments of the

treatment, suggesting a renoprotective action independent from the

antihypertensive action (Bolger & Anker, 2000; Persson et al., 2008;

Zhao & Xu, 1999).

Tumor necrosis factor alpha (TNF-α) cytokine is involved in the

pathogenesis of different clinical conditions, including cardiovascular

disease. Its expression increases in mononuclear cells of patients with

congestive cardiac failure, and high concentrations are associated with

cardiac failure progression (Bolger & Anker, 2000; Dedoussis et al.,

2005; Vendrell et al., 2003; Zhao & Xu, 1999). It is known that TNF-α

plays an important role in the activation of different inflammatory fac-

tors (Lozano et al., 2003). Recent studies have pointed to the

TABLE 4 Findings regarding the use of aliskiren in hepatic injury models

References Animal model Results/conclusions

Karcioglu et al., 2016 Male albino Wistar rats;

Paracetamol-induced injury

Hepatic protective effect with normal histology in treated animals and

reduction of TNF-αin hepatocytes.

Kishina et al., 2014 Ob/Ob rats Decreased fibrosis area. Reduced α-SMA, TGF-β1 mRNA levels, MCP-1

gene expression, TNF-α; collagen type I; Kupffer cells. It attenuated

hepatic steatosis and total hepatic cholesterol content. Inhibited the

activation of liver stellate cells. Reduced oxidative stress,

inflammatory cytokine levels, and fibrosis.

Lee et al., 2013 Mice deficient in methionine and

choline

Decreased triglyceride levels, inflammatory focus and hepatocytes

balloons; reduced apoptotic hepatocytes, collagen deposition,

fibrosis and oxidative stress. Reduced levels of TBARS, 4-HNE and

p47 phox, catalase 1, GPX1 and SOD, TNF-α 1, α-SMA, COL1α1 and

TIMP-.1 increased insulin sensitivity, expression of Akt and catalase

1. Activated PPARα and AMPK.

Aihara et al., 2013 Male Fischer 344 mice Reduction in fibrosis, α-SMA expression, hepatocarcinogenesis, TGF-

β1, and procollagen α1 and ERK1/2 phosphorylation. Suppression of

stellate cells and of neovascularization.

Lee, Chan, Hsieh, Huang & Lin,

2012

C57BL mice with chronic liver disease Reduction in ALT and tendency to reduce AST. Reduction of apoptotic

hepatocytes from TNF-α, iNOS, COX-2, TGF-β1, α-SMA, collagen

Type I α1, TIMP-1, phosphorylated ERK genes. Reduction in

oxidative stress, stellate cell activation, and Kupffer cell activation. It

attenuated liver inflammation and fibrosis.

Ramalho et al., 2017 C57BL/6 rats It reduced liver weight, total liver fat, triglyceride and cholesterol

accumulation, AST and ALT dosage, steatosis levels, and lipid

deposition. It decreased neutrophil influx and inflammation, as well

as collagen deposition. It halted the increase in plasma glucose levels

and stimulated insulin increase. It prevented increased expression of

the IL-1β and TNF-α genes.

Abbreviations: 4-HNE, hydroxynonenal; Akt, kinase protein; AMPK, 50 adenosine monophosphate-activated protein kinase; COL1α1, collagen type 1 α1;
COX-2, cyclooxygenase −2; ERK1/2 = extracellular signal-regulated protein kinases 1 and 2; GPX1, glutathione peroxidase; iNOS, inducible nitric oxide

synthase; MCP-1, monocyte chemoattractant protein-1; PPARα, peroxisome proliferator-activated receptor α; SOD, superoxide dismutase; TBARS,

thiobarbituric acid reactive substances; TIMP-1, tissue inhibitor of metalloproteinases; TNF-α, tumor necrosis factor.
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abnormal activity of TNF-α as an important factor in the mechanism

of liver injury (Muto et al., 1988; de la Mata et al., 1990; Sun,

Tokushige, Isono, Yamauchi, & Obata, 1992). In this review, ALI was

capable of reducing cytokine levels in cardiac, hepatic, and renal

tissues (Bae et al., 2014; Karcioglu et al., 2016; Kishina et al., 2014;

Lee et al., 2012; Lee et al., 2013; Ramalho et al., 2017; Takamura

et al., 2016). Collagens are the main structural protein of the ECM

(Pozzi, Wary, Giancotti, & Gardner, 1998; Yeh, Lin, & Tang, 2012). The

TABLE 5 Results obtained from the use of aliskiren in experimental lung injury models

References Animal model Results/conclusions

Abuelezzy, et al. 2016 Rats; bleomycin-induced fibrosis Reduction in fibrosis and inflammation

Fletcher et al., 2017 Fat embolic rats Reduction in inflammatory cells and fibrosis

markers

Asker, Mazroa, Boshra, & Hassan, 2015 Mouse; bleomycin-induced fibrosis Reduction in collagen fibers. TGFβ1 and

hydroxyproline

Wang et al., 2015 Transgenic mice RenTgMK Pulmonary architecture normalization and

significant reduction of pro-fibrotic

factors (TGFβ1 and CTGF), myofibroblast

marker (α-SMA), and extracellular matrix

proteins (fibronectin, Types I and II

collagen)

Díaz-Pina et al., 2015 Commercial fibroblast strain, which was

exposed to the drug for 6 hr

Aliskiren had no effect on the induction of

extracellular matrix molecules

Abbreviations: α-SMA, α-smooth muscle actin; CTGF, connective tissue growth factor; TGFβ1, transforming growth factor β1.

TABLE 6 Studies on the use of aliskiren in experimental peritoneal injury models

References Animal model Results/conclusions

Pérez-Martinez et al., 2012 Sprague–Dawley female rats Reduced expression of fibronectin, collagen type III, C-reactive protein

and amyloid-P protein. Suppression of the pro-apoptotic factors

genetic expression. Increase of mRNA Bcl-2, D2/D0 glucose ratio. It

prevented peritoneal mesothelial cell damage and subsequent

inflammation and fibrosis.

Koçak et al., 2012 Nonuremic albino Wistar rats with

encapsulated peritonitis, chlorhexidine

gluconate-induced sclerosis

Reduction in peritoneal fibrosis and MMP-2 tissue levels.

Ke et al., 2010 Male Sprague–Dawley rats with

chlorhexidine digluconate-induced

fibrosis

Reduction in TGF-β1, α-SMA, fibronectin, collagen, and VEGF.

Decreased peritoneal thickness.

TABLE 7 Studies on the use of aliskiren in experimental injury models

References Animal model Results/conclusions

Moniwa et al., 2013 mRen2 mice Correlation with renal damage. Tubular proliferation and lymphocyte

infiltration were noted. Tubular dilatation. Reduction in cardiac

hypertrophy and proteinuria

Yakamoto et al., 2009 ENOS _/_ and wild-type mice (C57BL/6J) Reduction in interstitial fibrosis, coronary artery thickness, perivascular

fibrosis, macrophages infiltration, and superoxide levels. Reduction in

albuminuria by NADPH oxidase. It prevented cardiac hypertrophy,

glomerulosclerosis, inflammation, and vascular intima hyperplasia.

Habibi et al., 2008 Ren2 heterozygous rats and control SD Reduction in fibrosis and mitochondrial content. Reduction in NADPH

oxidase and nitrotyrosine content, improved pancreatic structure.

Pilz et al., 2005 DTGR mice with hypertension Albuminuria remained constant or was improved. Reduction in cardiac

hypertrophy, wall thickness, and diastolic dysfunction. Decreased

numbers of macrophages, CD4, CD8, dendritic, CD86+ and MHC II+

cells, α-MHC, β-MHC, and ANP in the heart. Reduced infiltration of

inflammatory cells in the kidneys

ALTAREJO MARIN ET AL. 121



cell-collagen interaction controls a variety of cell activities, including

proliferation, migration, and invasion through integrin and discoidin

domain receptors (Canty & Kadler, 2005; Lochter & Bissell, 1995;

Pozzi et al., 1998; Provenzano et al., 2006; Yeh et al., 2012; Zhang

et al., 2013). Many diseases result in collagen accumulation. In

Duchenne muscular dystrophy (DMD), for example, muscle tissue

injuries are persistent, leading to the activation of fibrinogenic cells

and culminating in connective tissue deposition and subsequent fibro-

sis (Zanotti et al., 2015). An increase in collagen production also

occurs in scleroderma, an autoimmune disease characterized by skin

and internal organ fibrosis, vasculopathy and the production of anti-

bodies (Bossini-Castillo et al., 2013; Lopez-Isac et al., 2014; Radstake

et al., 2010). The reduction in collagen deposition by ALI may be an

advantage in such conditions.

During the fibrotic process, the ECM goes through remodeling via

MMP-mediated collagen degradation (Genovese, Manresa, &

Leeming, 2014; Zhen, Brittain, & Laska, 2008). Deregulation in MMPs

is observed in many experimental models and human disorders, and

their increased expression accompanies renal fibrosis (Catania, Chen, &

Parrish, 2007; Tan & Liu, 2012). ALI reduced MMP levels and collagen

deposition in the kidneys, heart and peritoneum in many experimental

models (Elrashidy et al., 2012; Furukawa et al., 2013; Ma et al., 2012;

Yamada et al., 2016).

ALI was primarily created for the control of systemic arterial

hypertension. It should be orally administered at a dose of

150–300 mg once daily (Whelton et al., 2017). It was especially used

in patients with high levels of renin and/or in cases of hyper-

aldosteronism that need to be investigated for renal or renovascular

causes (Spence, 2010).

According to the 2017 American College of Cardiology guidelines,

ALI is a long-lasting medication that should not be used in combina-

tion with ACE or ARB inhibitors. It should not be used during preg-

nancy, and it increases the risk of hyperkalemia, and may cause acute

renal failure in patients with severe bilateral renal artery stenosis

(Whelton et al., 2017).

Therefore, it is a medication that has been little used for the con-

trol of arterial pressure. However, it brings about many other effects

that were explored in this review. Such effects can be useful in many

comorbidities, especially reducing tissue fibrosis.

5 | CONCLUSIONS

ALI is a medication that has been little used for the control of arterial

pressure. It has demonstrated antifibrotic potential in several experi-

mental models, interfering with levels of fibrogenic cytokines and oxi-

dative stress. Therefore, its use in many diseases in which fibrosis

plays an important pathophysiological role is suggested.
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