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BACKGROUND: Identification of preterm births and accurate esti- metabolite measurements and readily available physical character-
mates of gestational age for newborn infants is vital to guide care.

Unfortunately, in developing countries, it can be challenging to obtain

estimates of gestational age. Routinely collected newborn infant screening

metabolic analytes vary by gestational age and may be useful to estimate

gestational age.

OBJECTIVE: We sought to develop an algorithm that could estimate

gestational age at birth that is based on the analytes that are obtained from

newborn infant screening.

STUDY DESIGN: We conducted a population-based cross-

sectional study of all live births in the province of Ontario that

included 249,700 infants who were born between April 2007 and

March 2009 and who underwent newborn infant screening. We

used multivariable linear and logistic regression analyses to build a

model to predict gestational age using newborn infant screening
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istics data (birthweight and sex).

RESULTS: The final model of our metabolic gestational dating algorithm
had an average deviation between observed and expected gestational age

of approximately 1 week, which suggests excellent predictive ability

(adjusted R-square of 0.65; root mean square error, 1.06 weeks). Two-

thirds of the gestational ages that were predicted by our model were

accurate within �1 week of the actual gestational age. Our logistic

regression model was able to discriminate extremely well between term

and increasingly premature categories of infants (c-statistic, >0.99).

CONCLUSION: Metabolic gestational dating is accurate for the pre-

diction of gestational age and could have value in low resource settings.
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dentification of preterm birth and
I accurate estimates of gestational age
(GA) for newborn infants is vital for
several reasons.1,2 These estimates can
provide guidance as to what treatments
and investigations are most appropriate
for the newborn infant and can assist
with accurate assessments of neuro-
cognitive development.3,4 Unfortu-
nately, in developing countries, it can be
challenging to obtain estimates of GA
because of a lack of prenatal ultrasound
dating and unreliable patient recall of
menstrual period history.5,6 Obtaining
accurate estimates of GA has been
recognized by the Gates Foundation as a
priority for infant health. As part of their
Grand Challenges Explorations 13
competition entitled “Explore NewWays
to Measure Fetal and Infant Brain
Development,” the Foundation sought
new approaches for measuring GA
accurately at birth to support the
creation of developmental standard
curves.7

We postulated that a newborn infant’s
GA could be estimated from newborn
infant analyte values in conjunction with
other readily available information, such
as sex and birthweight.8,9 Analyte data
are obtained from examination of dried
blood spot samples taken from heel
pricks typically used for newborn infant
screening. Our hypothesis stemmed
from our previous work that revealed a
metabolic distinction between preterm
children and term children, as indicated
by patterns of amino acids and endo-
crine markers at birth.10 We identified
that metabolic patterns varied depend-
ing on the degree of prematurity.
Therefore, in this study, we sought to
develop an algorithm that could estimate
GA at birth, based on the analytes that
are obtained from newborn infant
screening.
APRIL 2016 Ameri
Methods
Design
We conducted a population-based cross-
sectional study to predict GA with the
use of newborn infant screening analyte
data and readily available physical char-
acteristics from infants whowere born in
the province of Ontario, Canada.

Data
We included data for infants who were
born in Ontario, Canada, from April 1,
2007, toMarch 31, 2009, who completed
newborn infant screening. Virtually all
infants who are born in Ontario undergo
newborn infant screening via heel prick
blood spot, which is typically obtained
between 24 and 72 hours of age. The
Newborn Screening Ontario (NSO)
program screens each infant for 29
conditions with the use of a panel of
screening analytes, most of which are
measured by tandemmass spectrometry.
The exceptions are 17 hydrox-
yprogesterone (17OHP) and thyroid-
stimulating hormone (TSH), which
are measured using a fluorescent
immunoassay (autoDELFIA, Perkin
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TABLE 1
Measured newborn infant screening metabolites

Acyl-carnitines C0, C2, C3, C4, C5, C6, C8, C8:1, C10, C10:1, C12, C12:1, C14,
C14:1, C14:2, C16, C18, C18:1, C18:2

Amino acids arginine, phenylalanine, alanine, leucine, ornithine, citruline,
tyrosine, glycine, argininosuccinate, methionine, valine, biotinidine

Fatty acid oxidation C3DC, C4DC, C5OH, C5DC, C6DC

Endocrine disorders 17OHP, TSH

Galactosemia and
biotinidase deficiency

GALT (Galactose-1-Phosphate Uridyltransferase), biotinidase

Wilson et al. Predicting gestational age using newborn screening analyte data. Am J Obstet Gynecol 2016.
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Elmer, Waltham, MA); biotinidase,
measured using a colorimetric enzyme
assay (Spotchek Pro; Astoria-Pacific,
Inc, Clackamas, OR); and galactose-1-
phosphate uridyltransferase (GALT)
measured by fluorescent enzyme assay
(Spotchek Pro). The analyte levels for all
infants who complete screening are
available in the NSO database. Broadly,
the newborn infant screening analytes
include acyl-carnitines, amino acids,
endocrine markers, and markers of
biotinidase deficiency and galactosemia
(Table 1).

The NSO analyte data have been
linked securely with the use of unique
encoded identifiers to health adminis-
trative data at the Institute for Clinical
Evaluative Sciences, which captures data
on health services use, including hospi-
talizations, for virtually all Ontario
residents. Data on birthweight, GA, ul-
trasound timing, and other perinatal
factors were obtained from the birth
admission in the Canadian Institute for
Health Information’s (CIHI) Discharge
Abstract Database, the Ontario Health
Insurance Plan database, and the
newborn infant screening record. GA
was based on best obstetric estimate, a
combination of self-reported first day of
last menstrual period and ultrasound
measurement, when available. Most
mothers in Ontario receive prenatal care,
including ultrasound-guided gestational
dating. Small for gestational age (SGA10,
below 10th percentile for birthweight
given gestational age) and large for
gestational age (LGA90, above 90th
percentile for birthweight given gesta-
tional age) were calculated based on
513.e2 American Journal of Obstetrics & Gynecol
standard cutpoints developed in a
Canadian population.

Analysis
We divided our cohort of live born in-
fants into 3 subsamples: 1 for model
development, 1 to validate indepen-
dently the choice of terms that were
included in the final model, and 1 dataset
to assess independently the performance
of the final model. These subsamples
were generated by randomly partition-
ing infants according to a 2:1:1 ratio,
stratification by term, near term, pre-
mature, and extremely premature status
and sex to ensure balance across the 3
subsamples.

Data preparation for regression
modeling
We removed the data of infants who
screened positive for any disorder from
the cohort, which had the effect of
removing most extreme outliers. Even
after extreme outliers were removed,
most analyte distributions were strongly
right skewed. To pull outliers closer to
the rest of the data and stabilize the
variance, analyte levels were natural log
transformed. We then standardized each
analyte value by subtracting the sample
mean (on the log scale) and dividing the
result by the sample standard deviation
(on the log scale), such that the resulting
transformed variable had a mean of
0 and a standard deviation of 1. This
allowed for easier interpretation when
we compared the relative influence of
analytes in a multivariable regression
model, such that the regression co-
efficients represented the change in GA
ogy APRIL 2016
in weeks for an increase of 1 standard
deviation in the (log) analyte value.

Predictive modeling
We fit a multivariable linear regression
model with continuous GA in weeks as
the dependent variable and used a vari-
able selection algorithm to select terms
for inclusion in the model. The full set of
analyte main effects, as well as quadratic
and cubic effects, was included in all
models to account for a non-linear
association between analyte and GA. We
then conducted a backwards elimination
procedure that initially included all of the
main effect terms and all pairwise in-
teractions between analytes. The Schwarz
Bayesian Criterion (SBC) was used to
guide the sequential removal of interac-
tion terms from the model. SBC is a
penalized likelihood criterion that quan-
tifies how well the model fits the data,
while penalizing model complexity.11

Models with smaller SBCs are favored.
Once nomore interaction terms could be
removed from themodel based on SBC as
evaluated in the model development
subsample, the backwards elimination
procedure was stopped. We then calcu-
lated the square root of the mean square
error (RMSE) based on fitting the devel-
opment models at each step of the back-
wards elimination in the independent
validation set and choosing the model
with the lowest RMSE in the validation
set. The RMSE reflects how close the
model estimate is to the true GA on
average across all observations. Finally,
the developmentmodel performance was
evaluated in the test dataset, which had
no role in model fitting or validation.
This process provided maximum
protection from overfitting and over-
optimism about model performance.

Evaluation of model performance
The model built with the use of the
development and validation datasets was
evaluated in the test dataset in terms of
adjusted R-square, square root-mean-
square error (RMSE), and proportion of
infants with predictedGAwithin�1, 2, 3,
and 4 weeks of true GA. RMSE is in the
units of GA and hence represents the
average deviation of predicted GA from
actual GA over all infants in the test

http://www.AJOG.org


TABLE 2
Distribution of births by sex, prematurity, and multiplicity

Variable N (%)

Sex

Male 128,079 (51.29)

Female 121,621 (48.71)

Prematurity categories

Extremely preterm (�27 wk) 555 (0.22)

Very preterm (28-32 wk) 2,616 (1.05)

Near term (33-36 wk) 16,462 (6.59)

Term (�37 wk) 230,067 (92.14)

Small for gestational age (below 10th percentile)

Not small for gestational age 220,167 (91.28)

Small for gestational age 21,039 (8.72)

Large for gestational age (above 90th percentile)

Not large for gestational age 214,800 (89.05)

Large for gestational age 26,406 (10.95)

Multiple births

No 241,206 (96.60)

Yes 8,494 (3.40)

Wilson et al. Predicting gestational age using newborn screening analyte data. Am J Obstet Gynecol 2016.
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dataset. Model performance was evalu-
ated for all infants, for different levels of
prematurity, and for infants who were
small for their GA to determine whether
the model performed well in babies with
low birthweight/intrauterine growth re-
striction. We defined prematurity in the
followingmanner: term,�37 weeks; near
term, 33-36 weeks; very preterm, 28-32
weeks, and extremely preterm, <28
weeks. We also evaluated model perfor-
mance according to history of maternal
ultrasound during pregnancy. We cate-
gorized infants based on whether the
mother received her first ultrasound
within 16 weeks, 17-20 weeks,�21 weeks
and those with no record of their mother
receiving anultrasoundduring pregnancy
according to Ontario Health Insurance
Plan claims for diagnostic ultrasound
scans that were specific to pregnancy.

Modelperformance for classification
as £34 or >34 weeks GA
Thirty-four weeks gestation is an
important threshold because it represents
the lower limit of late preterm infant
period.12,13 It is the GA after which the
health risks of preterm infants are
reduced, while still remaining elevated
compared with term infants.14 To classify
infants according to GA �34 or >34
weeks, we conducted logistic regression
analysis on the test data with actual GA
dichotomized as�34 vs>34weeks as the
outcome, and the final set of predictors
that was chosen for the multiple linear
regression model as covariates. The lo-
gistic regression model was fit in the
model development subset as mentioned
earlier, then the c-statistic (area under the
receiver operating characteristic curve) as
well as sensitivity, specificity, positive
predictive value, and proportion of in-
fants who were classified correctly were
calculated to quantify the success of the
discrimination between the groups with
the use of the validation subsample. The
test performance was evaluated by
adjustment of the GA cutpoint to deter-
mine the optimal tradeoff (higher sensi-
tivity comes at the cost of lower specificity
and lower positive-predictive value).

All analyses were conducted with SAS
software (version 9.4; SAS Institute Inc,
Cary, NC) and R (version 3.1.2).
This study was approved by the
institutional review board at Sunny-
brook Health Sciences Centre, Toronto,
Canada, and by the Ottawa Health
Science Network Research Ethics Board,
and the Institute for Clinical Evaluative
Sciences’ Privacy Office.

Results
Characteristics of sample
Data were available for virtually all of the
270,000 live born infants who were
delivered in Ontario between April 1,
2007, and March 31, 2009. Complete
data for all newborn infant screening
study analytes were available for 249,700
infants. The sample characteristics are
presented in Table 2. There were 128,079
male infants (51.3%), 230,067 term in-
fants (92.1%), 21,039 small for GA
(SGA10) infants (8.7%), 26,406 large
for GA (LGA90) infants (11.0%), and
8494 babies from multiple births. We
randomly partitioned the dataset into
50% model development (n¼ 124,854),
25% validation (n ¼ 62,412), and 25%
test (n ¼ 62,434) subsets, while
APRIL 2016 Ameri
maintaining the proportions of term/
near term/very preterm/extremely pre-
term delivery and sex ratio across
subsets.

Overall model performance
Our final model included 43 effects that
included birthweight and sex and a total
of 311 model terms, which consisted of
linear, squared, and cubed main effect
terms and pairwise linear interaction
terms (Appendix). The 10 most predic-
tive analytes (in terms of the change in
log-likelihood) were alanine, C5, C16,
C18:2, C4DC, C5DC, tyrosine, TSH,
leucine and 17OHP.

Table 3 presents model performance
overall and in term children (�37weeks)
and in increasing categories of prema-
turity. Results are shown for the full
model that considered all analytes plus
sex and birthweight, for the model
excluding birthweight and for a model
including sex and birthweight alone.

Overall, the final model, as evaluated
in the test subsample, had an adjusted
R-square of 0.67 and a root-mean-
can Journal of Obstetrics & Gynecology 513.e3
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square error (RMSE) of 1.06 (meaning
the average deviation between observed
and expected GA was approximately 1
week), with two-thirds of predicted GAs
falling within �1 week of actual GA
(Table 2). In term children, 69% of in-
fant GAs were predicted within�1 week,
and 96% were predicted within �2
weeks. In near term infants, 39% were
predicted within �1 week, and 76%
were predicted within �2 weeks. In very
preterm infants, 51% were predicted
within �1 week, and 77% were pre-
dicted within �2 weeks.

Model performance in subgroups
The overall RMSE in low birthweight
infants (SGA10) was 1.34, compared
with 1.03 in non-SGA10 infants across
all categories of prematurity. However,
the increased prediction error was
limited to term children (�37 weeks),
because the model performed slightly
better in every category of SGA10 infants
who were preterm (<37 weeks).

Table 4 provides a breakdown of the
estimated category of GA compared with
the actual category of GA. GA for term
SGA10 infants tended to be under-
estimated by the model, which resulted
in some SGA10 infants (10%) being
misclassified as near term. However,
<0.1% were misclassified as very
preterm, and none were misclassified as
extremely preterm (Table 5). Conversely,
the model tended to overestimate GA in
infants classified as LGA90. For example,
>80% of LGA90 near term babies were
misclassified as full term.

For comparison, a model that
included only sex and birthweight had
an RMSE of 1.26, and a model that
included sex and all of the analytes (but
not birthweight) had an RMSE of 1.23,
compared with an RMSE of 1.05 for
the full model that included sex, birth-
weight, and analytes.

Modelperformance for classification
as £34 or >34 weeks GA
In the test data, the overall c-statistic
(area under the ROC curve; Figure) was
0.991, which suggests excellent discrim-
ination of GA of �34 vs >34 weeks.
The test performance was evaluated by
adjustment of the predicted probability

http://www.AJOG.org


TABLE 5
Agreement of actual gestational age category and predicted gestational age
category for small-for-gestational-age (below 10th percentile) infants

Actual gestational age, wk

Predicted, %

Total�27 28-32 33-36 �37

�27 100.0 0.0 0.0 0.0 100

28-32 22.7 75.0 2.3 0.0 100

33-36 0.0 14.6 79.9 5.5 100

�37 0.0 0.1 10.4 89.5 100

Wilson et al. Predicting gestational age using newborn screening analyte data. Am J Obstet Gynecol 2016.

TABLE 4
Agreement of actual gestational age category and predicted
gestational age category

Actual gestational age, wk

Predicted, %

Total�27 28-32 33-36 �37

�27 79.3 20.0 0.0 0.7 100

28-32 8.1 66.7 21.9 3.3 100

33-36 0.0 3.6 59.7 36.7 100

�37 0.0 0.0 2.0 98.0 100

Wilson et al. Predicting gestational age using newborn screening analyte data. Am J Obstet Gynecol 2016.
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cutpoint of the logistic model to deter-
mine the optimal tradeoff between
sensitivity and specificity. For example,
the performance of the model in
discriminating between �34 vs >34
weeks had specificity of 99.5%, positive-
predictive value of 80.9%, and 98.9% of
all infants were correctly classified when
sensitivity was 80% (ie, 80% of infants
with GA �34 weeks were correctly
identified by the model). Table 6 pre-
sents specificity, positive-predictive
value, and percentage correctly classi-
fied for benchmark sensitivities of
50-95%.

Model performance based on
timing of dating ultrasound scan
In the full analysis cohort, 98.7% had at
least 1 ultrasound scan; 69.4% had an
ultrasound scan performed in the first 16
weeks of gestation; 83.5% had an ultra-
sound scan in the first 18 weeks of
gestation, and 92.7% had an ultrasound
scan in the first 20 weeks of gestation. In
the model testing subset, the RMSE was
1.06 for those who had ultrasound scans
in the first 16 weeks of gestation; 1.01 for
weeks 17-20, and 1.11 for �21 weeks. If
there was no code for ultrasound scan,
the RMSE was 1.13.

Comment
In this study, we demonstrated the po-
tential value of analytes that were derived
from blood spots typically used for
newborn infant screening to predict GA
in the newborn infant. The model we
developed, which used these analytes in
combinationwith sex and birthweight, is
able to predict continuous GA within
about �1 week overall and within �1 to
2 weeks in near term and very preterm
babies. The model showed excellent
discrimination for classification of in-
fants as >34 vs �34 weeks.

There is a potentially substantial value
to the use of the blood spotederived
analytes for the estimation of GA.
Although the current standard method
for the determination of GA, first-
trimester ultrasound scanning,15-19 re-
quires interpretation by a specialized
physician and requires equipment that
may not be available readily in resource-
poor settings, analyses based on blood
spots could be automated fully and
standardized for this application. Other
methods of the establishment of GA also
have limitations.20 Reliable records of
last menstrual period may not be avail-
able in settings in which there is no
prenatal care. Even when last menstrual
period data are available, it may not
provide an accurate estimate of GA.21

Assessment of anterior lens capsule
vascularity has been used as an alterna-
tive mechanism for postnatal GA dating.
However, this approach is difficult in
preterm children. A combination of
physical and neurologic assessments,
such as the New Ballard Score and the
Dubowitz GA assessment, have emerged
as the standard for postnatal GA
dating.17,22 However, these may be diffi-
cult for nonpediatricians to perform and
have suboptimal interrater reliability
scores.23-26 They are not as accurate as
prenatal ultrasound scanning,27-29 have
limitations at the extremes of GA, in
critically ill infants, and accuracy may
vary by ethnicity.30-32 The main
APRIL 2016 Ameri
limitation to the use of blood spots is the
availability of tandem mass spectrome-
ters or other necessary devices. There
have been advances in the development
of portable tandem mass spectrometer
devices that may offer the opportunity to
better operationalize metabolic gesta-
tional dating in practice. In the absence
of these, blood spot cards could be
shipped to a setting where the necessary
analytic machinery is available.

In our previous work, we identified
variation in analyte levels (amino acids,
endocrine markers, enzymes) based on
degree of preterm birth and demon-
strated heat map differences (correla-
tions between analytes) based on
categories of preterm birth.10 We hy-
pothesized that the differences in meta-
bolic profile could be due to either lack
of maturation of organs/pathways (eg,
TSH lower in preterm children) or
catabolic stress in preterm children
(resulting in, for example, elevation in
17OHP).33-36 However, low birthweight,
term children are also at risk of
can Journal of Obstetrics & Gynecology 513.e5
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TABLE 6
Sensitivity, specificity, and positive-predictive value for the classification of
infants as gestational age >34 vs £34 weeks

Sensitivity, % Specificity, % Positive-predictive value, % Correctly classified, %

50 99.9 96.9 98.5

60 99.9 94.3 98.8

70 99.8 89.5 98.9

80 99.5 80.9 98.9

90 98.6 65.8 98.4

95 97.1 48.8 97.0

Wilson et al. Predicting gestational age using newborn screening analyte data. Am J Obstet Gynecol 2016.

FIGURE
Receiver operating characteristic curve for full model

The receiver operating characteristic curve represents the trade-off between false-positive and true-
positive rates over all possible cutoffs of predicted probability from the logistic model. The diagonal
straight line represents random chance. The higher the lift of the receiver operating characteristic
curve from the diagonal, the better the discrimination of the model. This is represented by the area
under the receiver operating characteristic curve, which is equivalent to the c-statistic for the logistic
regression model.
ROC, receiver operating characteristic.

Wilson et al. Predicting gestational age using newborn screening analyte data. Am J Obstet Gynecol 2016.
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experiencing catabolic stress, and it is
important to be able to distinguish these
children from preterm births. Our
model appears to distinguish these chil-
dren effectively. Analytes plus sex had a
higher predictive value than sex and
birthweight alone in all children and in
SGA10 term children. The addition of
analytes into a model with sex and
birthweight sharply improved the pre-
dictive value of the model. Perhaps most
importantly, in term SGA10 children
(who are likely to be at risk of catabolic
stress and potentially misclassified as
preterm), the model accurately identi-
fied approximately 90% of them as being
term. This strongly suggests that factors
other than catabolic stress are respon-
sible for the different analyte patterns in
preterm children.

Strengths of our analyses are that the
large sample size and computing power
enabled us to partition our data and to
use a sound variable selection, internal
validation, and test performance strategy
to avoid potential overfitting. With >30
candidate analytes to evaluate, in-
teractions among analytes and nonlinear
relationships quickly result in a vast
number of variables to consider in
regression modeling. We were able to
balance the need for an accurate model,
to manage hundreds of candidate vari-
ables (while avoiding overfitting the
model to the data), and to end up with
useful model with reproducible perfor-
mance characteristics. Our gold stan-
dard assessment of GAwas based on best
obstetric estimate. Because approxi-
mately 70% of pregnancies in Ontario
have at least 2 prenatal ultrasound scans
and 99.4% have at least 1 scan, the vast
majority of the GA estimates likely
would be informed by ultrasound
scans.37 When examining billing data on
dating ultrasound scans in our cohort,
we found that 93% of the patients had
ultrasound scans within the first 20
weeks and that the model performed
better on those patients with ultrasound
scans than on those who did not have
them.

A potential limitation of our analysis
is the possibility that covariates at the
infant, maternal, and blood spot sample
level could impact the estimate of GA.38
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In resource-poor settings, the effect of
concomitant illness on analyte profiles,
HIV in particular, would need to be
accounted for.39 Our models appear to
predict GA less accurately in increasingly
preterm children, which may be due to a
combination of the smaller sample size
for preterm infants and also that these
infants may have more variable newborn
infant screening analyte levels because of
factors such as the infant’s physiology,
feeding status, and timing of sample
collection.

Future studies should examine the
impact of important infant, maternal,
birth, and sample covariates on the
predictive model. The impact of other
variables that were collected in expanded
newborn infant screening programs
should also be assessed. Our model
should be validated in other interna-
tional settings in which newborn infant
screening is being conducted.40-43 Ulti-
mately, a valid model should be tested in
low-resource settings for which biobank
cord blood and/or heel prick blood spot
samples and dating ultrasound scans are
available in a sample population.

If a globally valid algorithm can
be developed, we envision that the
following scenario could be realized: An
infant is born in a resource-poor setting.
Ideally, a blood spot sample is obtained
immediately after birth from a heel
prick. Samples potentially could also be
obtained from heel pricks after birth or
from cord blood. The blood spot sample
is analyzed by a portable device or
shipped to a center where the necessary
equipment is available. Analyte values
from this analysis are combined with,
when available, data entered by a health
care provider. This will permit modifi-
cation of the algorithm so that the GA
estimate is tailored to be as accurate as
possible for that specific infant. Accurate
information on GA for an infant will
then guide care providers to the most
appropriate treatments and assessments
for the infant’s category of prematurity.
There are many important obstacles to
the achievement of this objective, which
include the cost of testing (NSO costs are
$55 Canadian per child for the analytes
included in the model), the fact that
many infants in resource-poor countries
are discharged at <24 hours, NSO ana-
lytes typically are obtained 24-72 hours
after birth, and issues around standard-
ization of tests. The merits of this tech-
nology, both accuracy and feasibility,
should be compared with existing stra-
tegies for the estimation of GA. n
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APPENDIX
Predictors in the full model

Categorical: SEX
Linear, quadratic and cubic(x, x2 and x3 included for each covariate):

BIRTHWEIGHT ALA ARG BIO C0 C2 C3 C4 C4OH C5 C6 C8 C8:1 C10 C10:1 C12 C12:1 C14 C14:1 C14:2 C16 C18 C18:1 C18:2 C3DC C4DC C5OH
C5DC C6DC CIT GLY LEU MET ORN PHE GALT TSH TYR VAL 17OHP C16OH C16:1OH C18OH C18:1OH C5:1

Interactions:

BIRTHWEIGHT*SEX
BIRTHWEIGHT*ALA
BIRTHWEIGHT*ARG
ARG*BIO
BIO*C0
BIRTHWEIGHT*C2
C2*SEX
ALA*C2
ARG*C2
BIRTHWEIGHT*C3
C3*SEX
BIO*C3
C0*C3
C2*C3
C2*C4OH
C3*C4OH
BIRTHWEIGHT*C5
BIRTHWEIGHT*C6
C0*C6
C2*C6
C2*C8
ALA*C8:1
C0*C8:1
BIRTHWEIGHT*C10
ALA*C10
C8*C12
C12:1*SEX
C4OH*C12:1
BIRTHWEIGHT*C14
BIRTHWEIGHT*C14:1
C3*C14:1
C8:1*C14:1
BIRTHWEIGHT*C14:2
C2*C14:2
C16*SEX
ALA*C16
BIO*C16
C2*C16
C6*C16
C14:2*C16
C2*C18
C12*C18:1
C18:2*SEX
ARG*C18:2
C3*C18:2
LEU*PHE
MET*PHE

C8:1*C18:2
C12:1*C18:2
C16*C18:2
C18*C18:2
BIRTHWEIGHT*C3DC
C8*C3DC
C8:1*C3DC
C12*C3DC
C18:2*C3DC
C2*C4DC
C5*C4DC
C12:1*C4DC
C14*C4DC
C16*C4DC
C18:1*C4DC
C4OH*C5OH
C14:1*C5OH
C18:2*C5OH
BIRTHWEIGHT*C5DC
ARG*C5DC
BIO*C5DC
C12*C5DC
C18:1*C5DC
ALA*C6DC
C0*C6DC
C2*C6DC
C4OH*C6DC
C8:1*C6DC
C14:1*C6DC
C16*C6DC
C18:1*C6DC
C3DC*C6DC
C2*CIT C5*CIT
C3DC*CIT
C4DC*CIT
BIRTHWEIGHT*GLY
C0*GLY
C2*GLY
C3*GLY
C16*GLY
C18:2*GLY
C6DC*GLY
CIT*GLY
BIRTHWEIGHT*LEU
C2*LEU
C3*LEU
C4DC*LEU

C6DC*LEU
C3*MET
C10*MET
C12*MET
C18:1*MET
BIRTHWEIGHT*ORN
BIO*ORN
C0*ORN
C2*ORN
C3*ORN
C5*ORN
C8*ORN
C12*ORN
C14:1*ORN
C18*ORN
C18:1*ORN
C4DC*ORN
C5DC*ORN
CIT*ORN
GLY*ORN
PHE*SEX
ALA*PHE
BIO*PHE
C18*PHE
C4DC*PHE
C6DC*PHE
GLY*PHE
BIRTHWEIGHT*GALT
C14:2*GALT
C16*GALT
BIRTHWEIGHT*TSH
C6*TSH
C18:2*TSH
C4DC*TSH
C5DC*TSH
CIT*TSH
GLY*TSH
ORN*TSH
GALT*TSH
BIRTHWEIGHT*TYR
ALA*TYR
C2*TYR
C6*TYR
C12:1*TYR
C4DC*TYR
C6DC*TYR
CIT*TYR
MET*TYR
ORN*TYR

GALT*TYR
TSH*TYR
BIRTHWEIGHT*VAL
BIO*VAL
C2*VAL
C5*VAL
C8:1*VAL
C14:1*VAL
C18:2*VAL
C5DC*VAL
LEU*VAL
MET*VAL
TYR*VAL
BIRTHWEIGHT*17OHP
C2*17OHP
C4OH*17OHP
C8:1*17OHP
C12:1*17OHP
C4DC*17OHP
C6DC*17OHP
CIT*17OHP
LEU*17OHP
MET*17OHP
TYR*17OHP
VAL*17OHP
C2*C16:1OH
GLY*C16:1OH
BIRTHWEIGHT*C5:1
C2*C5:1
C5DC*C5:1
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