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13 

Abstract 14 

 15 

The aim of this study was to evaluate the effect of carnitine supplementation of semen extender on 16 

fertility parameters of frozen-thawed buffalo sperm. Buffalo semen was cryopreserved in BioXcell 17 

containing 0 (control group), 2.5 and 7.5 mM carnitine. After thawing, viability  motility, 18 

membrane integrity and capacitation status (assessed by localization of phosphotyrosine-containing 19 

proteins and chlortetracycline, CTC assay) were evaluated. Furthermore, total antioxidant capacity 20 

(TAC), reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, as well as adenosine 21 

triphosphate (ATP) content and phospholipids concentration were assessed. Finally, in vitro 22 
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fertilizing ability was evaluated after heterologous IVF. An increased post-thawing sperm motility 23 

and membrane integrity were recorded in both treated groups compared  to the control (44.4 ± 3.5, 24 

53.1 ± 3.9 and 52.5 ± 3.6 %; P<0.05 and 48.44 ± 0.69, 55.19 ± 0.54, 59.63 ± 0.30%; P<0.01 with 0, 25 

2.5 mM and 7.5 mM carnitine, respectively). Supplementation of carnitine to the freezing extender 26 

decreased (P<0.01) the percentage of pattern EA sperm, corresponding to high capacitation level, 27 

compared to the control (30.3 ± 3.8, 18.8 ± 2.8 and 7.2 ± 2.9 %, respectively with 0, 2.5 mM and 28 

7.5 mM carnitine). In agreement with this, carnitine also decreased (P<0.01) the percentage of 29 

sperm displaying CTC pattern B (capacitated sperm) (63.8 ± 1.8, 46.8 ± 2.2 and 37.2 ± 1.8 %, 30 

respectively with 0, 2.5 and 7.5 mM carnitine). Interestingly, carnitine increased TAC and ATP 31 

content of buffalo frozen-thawed sperm (1.32 ± 0.02, 1.34 ± 0.01, 1.37 ± 0.01 mM/L and 4.1 ± 0.1, 32 

5.3 ± 0.1 and 8.2 ± 0.4 nM x 108 sperm; P< 0.01 respectively with 0, 2.5 and 7.5 mM carnitine). 33 

Intracellular ROS decreased in carnitine treated sperm compared to the control, as indicated by 34 

Dihydroethidium (DHE) values (0.22 ± 0.01, 0.18 ± 0.01 and 0.14 ±0.0 µM/100 µL DHE 35 

respectively with 0, 2.5 and 7.5 mM carnitine; P<0.01), whereas LPO levels (on average 30.5 ±0.3 36 

nmol/mL MDA) and phospholipids concentration (on average 0.14 ± 0.00 µg/120 x 106 sperm) 37 

were unaffected. Despite the improved sperm quality the percentage of normospermic penetration 38 

after IVF was not influenced (on average 53.5 ± 1.8). In conclusion, enrichment of extender with 39 

carnitine improved buffalo sperm quality by increasing ATP generation and modulating ROS 40 

production, without affecting in vitro fertilizing ability.  41 

 42 

Keywords  43 

Carnitine, buffalo sperm, capacitation-like changes , oxidative stress fertilizing ability, ATP content 44 

 45 

1. Introduction  46 
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 47 

Breeding of water buffalo (Bubalus bubalis) has been steadily increasing worldwide over the years, 48 

as this species plays a critical role as a protein producer in tropical countries [1]. The utilization of 49 

advanced reproductive technologies is hence fundamental to increase genetic improvement and 50 

grading up of native non productive populations bred in these countries. For a wide application of 51 

both artificial insemination and in vitro embryo production semen cryopreservation plays a critical 52 

role [2]. However, buffalo spermatozoa are more susceptible to hazards during freezing and 53 

thawing than cattle spermatozoa, thus resulting in lower fertilizing potential [3; 4]. Freezing-54 

thawing of buffalo spermatozoa causes considerable damage to motility apparatus, plasma 55 

membrane, and acrosomal cap [5], as well as leakage of intracellular enzymes [6]. Furthermore, 56 

Elkhawagah et al. [7] recently reported that a very high incidence of capacitation-like changes was 57 

induced by cryopreservation in buffalo sperm Moreover, the high concentration of long chain 58 

polyunsaturated fatty acids in buffalo sperm membrane [8] makes them very susceptible to 59 

peroxidation damages. The lipid composition of the sperm membrane is in fact, a major determinant 60 

of the cold sensitivity, motility, and overall viability of spermatozoa [9]. Similar to capacitated 61 

spermatozoa, cryopreserved sperm display some alterations of lipid membrane, such as higher 62 

membrane fluidity, partial phospholipid scrambling [10] and loss of polyunsaturated fatty acids and 63 

cholesterol [11; 12]. 64 

There is evidence that cryocapacitation is at least in part induced by increased generation of reactive 65 

oxygen species (ROS) during sperm processing [2]. Antioxidants in the ejaculate protect 66 

spermatozoa from free radicals produced by leukocytes, prevent DNA fragmentation, improve 67 

semen quality, reduce cryodamage to spermatozoa, block premature sperm maturation and provide 68 

an overall stimulation to the sperm cells [13]. In buffalo, the semen extender has been supplemented 69 

with antioxidants such as cysteine and glutamine [14], as well as sericin [15], to decrease 70 

intracellular ROS and increase motility and membrane integrity of frozen-thawed spermatozoa. 71 
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Moreover, taurine or trehalose supplementation improved buffalo frozen-thawed sperm quality, 72 

reducing capacitation-like changes [16]. 73 

Carnitine is a quaternary ammonium compound biosynthesized in the kidneys and liver from lysine 74 

and methionine [17]. It is a powerful antioxidant [18] able to reduce the availability of lipids for 75 

peroxidation by transporting fatty acids into the mitochondria for β-oxidation to generate ATP 76 

energy [19; 20]. Moreover, it is also known to fulfill important roles in mammalian sperm 77 

maturation and metabolism because epididymal cells and spermatozoa derive energy from carnitine 78 

that is present in epididymal fluid [21]. It has been suggested that the high concentrations of 79 

carnitine in the epididymal fluid serve to stabilize the sperm plasma membrane[22], guarantee 80 

functional metabolic pathways and  increase motility [23]. In humans, rams and stallions, seminal 81 

carnitine is indeed correlated with sperm concentration and progressive motility [24; 25; 26]. Cattle 82 

supplementation of semen extender with carnitine improves sperm motility and DNA integrity, 83 

while reducing anomalies [27]. It is known that the cryopreservation processes, as well as the 84 

cryoprotectants used, decrease the intracellular concentration of carnitine in spermatozoa [28; 29; 85 

30]. We hypothesized that the enrichment of semen extender with carnitine prior to 86 

cryopreservation, stabilizing the sperm membrane and reducing lipids availability for peroxidation, 87 

would improve quality of buffalo sperm, by reducing capacitation-like changes. Therefore, this 88 

work was undertaken to evaluate the effects of carnitine supplementation of buffalo semen extender 89 

on post-thawing sperm motility, viability, membrane integrity and capacitation status. Furthermore, 90 

total antioxidant capacity (TAC), reactive oxygen species (ROS) and lipid peroxidation (LPO) 91 

levels, as well as (adenosine triphosphate) ATP content, phospholipids concentration  and in vitro 92 

fertilizing ability were also investigated  . 93 

 94 

2. Materials and methods 95 

 96 
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Unless otherwise stated, reagents were purchased from Sigma-Aldrich (Milan, Italy). 97 

 98 

2.1 Experimental design 99 

 100 

The study was carried out after approval of Animal Ethics Committee of the Institute. Four healthy 101 

Italian Mediterranean buffalo (Bubalus bubalis) bulls (4-6 years age) maintained at an authorized 102 

National Semen Collection Center (Centro Tori Chiacchierini, Civitella D’Arna, Italy) under 103 

uniform management conditions, routinely used for semen collection twice per week (to ensure 104 

homogeneous sperm quality), were selected for the trial. Eight ejaculates per bull (n=32) were 105 

collected once per weekby artificial vagina (IMV, L’Aigle Cedex, France). On fresh semen motility 106 

was evaluated by phase contrast microscopy, viability by Trypan Blue-Giemsa staining while the 107 

capacitation status was assessed by an indirect immunofluorescence assay to localize 108 

phosphotyrosine-containing protein and by chlortetracycline, CTC assay. Only ejaculates 109 

containing >80% motile spermatozoa were used in the study. After the initial semen assessment, 110 

each ejaculate was split in 3 aliquots that were diluted at 37°C with BioXcell (IMV-technologies, 111 

France), containing 0 (control group), 2.5 and 7.5 mM carnitine (Sigma, Cat no: C9500) to a final 112 

concentration of 30 × 106 spermatozoa per mL. The aliquots were frozen according to standard 113 

procedures. After thawing at 37°C for 40 sec in a water bath sperm motility, viability, membrane 114 

integrity and capacitation status were assessed. Furthermore, TAC, ROS and LPO levels, as well as 115 

ATP content and phospholipid concentrations were evaluated as described below. Moreover, sperm 116 

in vitro fertilizing capability was assessed by evaluating cleavage, penetration and polyspermy rates 117 

after heterologous IVF.  118 

 119 

2.2. Sperm motility 120 
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 121 

Sperm motility was examined by phase contrast microscopy (Nikon Diaphot 300 inverted 122 

microscope equipped with phase contrast and fluorescence filters) at 40 x magnification on a clean 123 

and dry glass slide overlaid with a coverslip and maintained on thermo-regulated stage at 37°C. Any 124 

drifting of the specimen was permitted to stop and the percentage of motile spermatozoa was 125 

subjectively determined to the nearest 5% by analyzing four to five fields of view [31]. 126 

 127 

2.3. Sperm viability by Trypan Blue/Giemsa technique 128 

 129 

Sperm viability was assessed by Trypan Blue/Giemsa technique as reported by Boccia et al. [32]. 130 

Briefly, 5 µl of semen and 5 µl of 0.27% Trypan blue were spread on a clean slide that wasplunged 131 

in a fixative solution (86 mL 1N HCl, 14 mL 37% formaldehyde solution and 0.2 g neutral red) for 132 

2 min and stained with 7.5% Giemsa overnight. Sperm cells were microscopically evaluated at 40 x 133 

magnification (Nikon Diaphot 300). A total of 100 spermatozoa were analyzed per slide and 134 

differentiated as: live with acrosome intact, dead with acrosome intact, live with acrosome reacted, 135 

or dead with acrosome reacted. To assess sperm viability,  the percentage of live sperm with an 136 

intact acrosome was recorded. 137 

 138 

2.4 Sperm membrane integrity  139 

 140 

Sperm membrane integrity was assessed after thawing by the hypo-osmotic swelling (HOS) test, as 141 

described by Jeyendran et al. [33]. Fifty µL of semen were mixed with 500 µL of an hypo-osmotic 142 

solution (0.73 g sodium citrate and 1.35 g fructose in 100 mL of distilled water, 150 mOsm) and 143 
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incubated at 37 ˚C for 45 min. A drop of diluted semen was placed on a clean slide and covered 144 

with a cover slip. A total of  200 spermatozoa were counted in different fields at 400 X under phase 145 

contrast microscope (Nikon E200) and the percentage of spermatozoa positive to HOS test (having 146 

coiled tails) was determined. 147 

 148 

2.5. Localization of tyrosine phosphorylated protein assay 149 

 150 

Localization of phosphotyrosine containing protein was detected using an indirect 151 

immunofluorescence assay as described by Tardif et al. [34]. Frozen-thawed sperm were selected 152 

by centrifugation (25 min at 300 × g) on a Percoll discontinuous gradient (45 and 80%) and washed 153 

twice, at 160 and then at 108 x g for 10 min each in mPBS (2.7 mM KCl, 1.5 mM KH2PO4, 8.1 mM 154 

Na2HPO4, 137 mM NaCl, 5.5 mM glucose and 1.0 mM pyruvate, pH 7.4) containing 2% (w/v) 155 

BSA. Sperm pellets were fixed in formaldehyde for 1 h at 4 °C, centrifuged at 300 g for 10 min 156 

andincubated overnight at 4 °C in mPBS.Twenty µL of sperm suspension were smeared, 157 

permeabilized in an absolute ethanol solution for 5 min. and incubated with anti-phosphotyrosine 158 

primary antibody produced in rabbit (Sigma, Cat no: T1325) for 1 h at room temperature. The slides 159 

were then incubated with secondary antibody, FITC-conjugated goat anti-rabbit IgG (Sigma, Cat 160 

no: F0382) for 1 h in the dark at room temperature and the slides were mounted with 90% (v/v) 161 

glycerol. Green fluorescence was observed by epifluorescent microscope (Nikon Diaphot 300) 162 

using FITC filter (B2-A, 520 nm wave length). A total of 100 spermatozoa were screened per slide 163 

and classified according to one of the four fluorescence patterns described by Cormier and Bailey 164 

[35]: Pattern NF, i.e. no fluorescence over the entire spermatozoa (non capacitated sperm) Pattern 165 

A, i.e. uniform fluorescence over the entire acrosome (low capacitation level); Pattern E, i.e. a short 166 
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line or triangle of fluorescence in the equatorial segment (medium capacitation level) and Pattern 167 

EA, i.e. fluorescence at both equatorial and anterior acrosomal regions (high capacitation level). 168 

 169 

2.6. Chlortetracycline (CTC) fluorescent assay 170 

 171 

The capacitation status of frozen-thawed buffalo spermatozoa was assessed by CTC fluorescent 172 

staining as described by Fraser et al. [36]. Briefly, 15µL of CTC staining solution (750 mM CTC, 5 173 

mM cysteine in 130 mM NaCl, and 20 mM Tris HCl, pH 7.4) were gently mixed with 15 µL of 174 

Percoll separated spermatozoa and fixed with the addition of glutaraldehyde (12.5% v/v). Five µL 175 

aliquot of fixed spermatozoa was placed on a microscope slide, mixed with 5 µl of mounting 176 

medium and overlaid with a coverslip. At least 100 spermatozoa per slide were analyzed and 177 

classified into one of three CTC staining patterns as described by Fraser et al. [34]: 1) Uniform 178 

bright fluorescence over the whole head (uncapacitated spermatozoa, pattern F); 2) fluorescence-179 

free band in the post-acrosomal region (capacitated spermatozoa, pattern B); 3) Dull fluorescence 180 

over the whole head except for a thin punctuate band of fluorescence along the equatorial segment 181 

(acrosome reacted spermatozoa, pattern AR). 182 

 183 

2.7. Indicators of oxidative stress 184 

 185 

2.7.1. Total antioxidant capacity (TAC) 186 

 187 
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Total antioxidant capacity (TAC) was estimated using a commercial kit (Antioxidant Capacity 188 

Assay Kit, Cayman Chemical Co. Ann Arbor, MI, USA) following the manufacturer's instructions. 189 

Briefly, Percoll separated spermatozoa were homogenized on ice in 1 mL of cold buffer (5 mM 190 

potassium phosphate pH 7.4, containing 0.9% sodium chloride and 0.1% glucose). Samples were 191 

centrifuged at 10.000 g x 15 min at 4°C and the supernatant was used for the assay. The standard 192 

curve was prepared using the Trolox standards. After the plate configuration, 10 µL of Trolox 193 

standards and samples were loaded in duplicate on the corresponding wells of a 96-well plate. Then 194 

10 µL of metmyoglobin and 150 µL of chromogen were added to all standard/sample wells. The 195 

reaction was initiated by adding 40 µL of hydrogen peroxide as quickly as possible. The plate was 196 

covered and incubated for 5 min on a shaker at room temperature. Absorbance was monitored at 197 

405 nm using a plate reader (GloMax®-Multi Detection System – Promega, Milano) and the values 198 

were expressed in mmol/L. 199 

 200 

2.7.2  Superoxide levels by Dihydroethidium (DHE) Assay 201 

 202 

Superoxide levels were measured by DHE Assay, previously described [37]. Dihydroethidium 203 

exhibits a weak blue fluorescence; however, once this probe is oxidized by superoxide anion, it 204 

intercalates within DNA, staining the cell nucleus or mitochondria with a red fluorescence. 205 

Dihydroethidium (2 µM) were added to sperm samples and incubated in the dark at room 206 

temperature for 20 min. A standard curve was prepared using DHE standards. Absorbance was 207 

monitored at 570 nm using a plate reader (GloMax®-Multi Detection System – Promega, Milano). 208 

The standard curve was prepared using the DHE standards, and the value for each sample was 209 

calculated from standard curve and expressed as µM/µL DHE. 210 

 211 
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2.7.3. Lipid peroxidation (LPO) levels 212 

 213 

Percoll separated spermatozoa were rewashed twice with PBS at 800 x g for 20 min at 4 °C. Sperm 214 

cells suspended in PBS were sonicated and the supernatant was used to determine LPO levels by the 215 

estimation of MDA concentration using the TBARS assay kit (Cayman Chemical Company, Ann 216 

Arbor, U.S.A.). Briefly, to each tube 100µL of sample/standard, 100µL of SDS solution and 4 mL 217 

color reagent were added. The mixture was boiled in a water bath for 1 h, after which the samples 218 

and standards were removed and placed in an ice bath for 10 min to stop the reaction. After cooling, 219 

the suspension was centrifuged at 4°C for 10 min at 1600 x g. The 150µL suspensions were loaded 220 

into the colorimetric plate and absorbance was measured at 535 nm. The standard curve was 221 

prepared using the MDA standards, and the value of MDA for each sample was calculated from 222 

standard curve and expressed as nmol/mL. 223 

 224 

2.8. ATP assay 225 

 226 

ATP content was measured using a Colorimetric ATP Assay Kit (Biovision, Milpitas, USA) 227 

following the manufacturer's instructions. Briefly, Percoll separated spermatozoa were 228 

homogenized in 100 µl ATP Assay Buffer and deproteinized using 10 kDa spin columns. Samples 229 

were incubated at room temperature for 30 min, and the absorbance were measured at 570 nm in a 230 

micro-plate reader (Bio-Rad Model 680). The standard curve was prepared using the ATP 231 

standards, and the value of ATP  for each sample was calculated from standard curve and expressed 232 

as nmol/108. 233 

 234 
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2.9. Phospholipids assay 235 

 236 

Phospholipids was estimated in the sperm lipid extract as described by Bartlett [38]. A standard 237 

phosphorous solution (8 µg/5 mL) was prepared by dissolving 3.5 mg KH2PO4 in 10 mL of 10 N 238 

H2SO4 in 100 mL double-distilled water (DDW). For the estimation of phospholipids content, 0.5 239 

mL of chloroform and 1 mL of perchloric acid (70%) were added to each tube containing 60 x 106 240 

of Percoll washed spermatozoa and the mixture was digested in a sand bath at 150-160 ۬C until it 241 

became clear. The samples were then removed and cooled to room temperature. Subsequently, 6 242 

mL of DDW and 0.8 mL of  ammonium molybdate (2.5%) were added, followed by 0.2 mL of 243 

Fiske-Subba Row reagent (1.2 g of sodium metabisulfite, 20 mg of 1-amino-2-nephthol-4-sulphonic 244 

acid and 120 mg of anhydrous sodium sulfite in 10 mL of DDW).The samples were heated for 7 245 

min in a boiling water bath, cooled to room temperature and absorbance at 660 nm was recorded 246 

(Perkin Elmer PTP-1). Simultaneously, the standard phosphorus solution and a blank were also run 247 

in the same manner. Phospholipids concentration was expressed in µg/120 x 106 sperm. 248 

 249 

2.10. In vitro sperm fertilizing ability 250 

Abattoir-derived bovine cumulus-oocyte complexes (COCs) with uniform cytoplasm and 251 

multilayered cumulus cells were matured in TCM 199 supplemented with 15% bovine serum (BS), 252 

0.5 µg/mL FSH, 5 µg/mL LH, 0.8 mM L-glutamine and 50 µg/mL gentamycin for 22 h at 39 °C, 253 

and 5% CO2 in air. In vitro matured COCs were fertilized in TALP buffered with 25 mM sodium 254 

bicarbonate and supplemented with 0.2 mM penicillamine, 0.1 mM hypotaurine and 10 µg/mL 255 

heparin (IVF medium) with sperm treated with 0 (control; n=429), 2.5 mM (n=430) and 7.5 mM 256 

carnitine (n=403), over 10 replicates. Percoll separated spermatozoa were diluted with IVF medium 257 

and added in the fertilization wells at the concentration of 2 × 106 sperm/mL. Gametes were co-258 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
revised 

incubated for 20 h at 39 °C, in 5% CO2 in air, after which presumptive zygotes were vortexed for 2 259 

min to remove cumulus cells, and incubated in synthetic oviduct fluid modified medium [39] in a 260 

humidified mixture of 5% CO2, 7% O2 and 88% N2 in air at a temperature of 39 °C. After 24 h of 261 

culture, the cleavage rate was assessed and confirmed by fixation of zygotes with absolute ethanol 262 

overnight and staining with DAPI for nuclei examination under epi-fluorescence microscope 263 

(Nikon Diaphot 300) after zona removal by protease (2 mg/mL) digestion. The penetration, normal 264 

fertilization and polyspermy rates were assessed by examining both uncleaved and cleaved 265 

embryos.  Normal fertilization included uncleaved embryos with two synchronous pronuclei (2PN) 266 

and cleaved embryos displaying a normal nucleus per cell. Polyspermic penetration included 267 

uncleaved embryos with >2PN or sperm heads and cleaved embryos with higher numbers of nuclei 268 

or sperm heads per cell. In addition, the proportion of fast (> 4 cells) and slow cleaving (2 cells) 269 

embryos were recorded.  270 

 271 

3. Statistical analysis  272 

 273 

Differences in sperm motility and viability, CTC and tyrosine phosphorylation patterns of fresh 274 

semen among bulls were analyzed by ANOVA. The same parameters and membrane integrity, 275 

TAC, ROS and LPO levels, ATP content and phospholipids concentration were analyzed in frozen-276 

thawed semen by a linear mixed model with the bull as repeated effect. The Bonferroni method was 277 

used to evaluate the differences among groups. The percentages of cleavage, total, normospermic 278 

and polyspermic penetration, as well as the proportion of fast and slow cleaving embryos were 279 

analyzed by Chi Square test. The level of significance was set at P<0.05.   280 

 281 
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4. Results 282 

 283 

4.1. Viability, motility and capacitation status of fresh semen 284 

 285 

No differences among bulls were found in sperm motility (on average 82.5 ± 0.8 %), viability (on 286 

average 92.6 ± 1.0 %) and capacitation status, evaluated by CTC (on average 86.1 ± 0.7, 13.8 ± 0.7 287 

and 0.2 ± 0.8 % of patterns F, B and AR, respectively). With regard to the immune-localization of 288 

tyrosine phosphorylated proteins, no sperm displayed the patterns NF and E, whereas the 289 

percentages of sperm showing patterns A and EA were 92.2 ± 0.9, and 7.8 ± 0.9, respectively. No 290 

differences were recorded in tyrosine phosphorylated proteins patterns among bulls, indicating the 291 

homogeneity of the samples at the beginning of the trial. 292 

 293 

4.2. Post-thawing sperm motility, viability and membrane integrity 294 

 295 

An increase in sperm motility and membrane integrity was recorded in both treated groups 296 

compared to the control, whereas sperm viability was not affected (Table 1).  297 

 298 

Table 1.  299 

 300 

4.3. Capacitation status of frozen-thawed sperm: localization of tyrosine phosphorylated proteins 301 

  302 

Supplementation of carnitine to the freezing extender decreased the percentage of sperm displaying 303 

pattern EA compared to the control, with a greater effect (P<0.01) at the higher concentration tested 304 
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(Table 2). Furthermore, when the extender was supplemented with carnitine a higher (P<0.05) 305 

percentage of sperm showing pattern A was observed compared to the control. Interestingly, the 306 

percentage of sperm exhibiting no fluorescence also increased (P<0.01) when sperm were treated 307 

with 7.5 mM carnitine. No differences in sperm displaying pattern E, however, were detected 308 

among groups. 309 

 310 

Table 2.  311 

 312 

4.4. Capacitation status of frozen-thawed sperm: CTC assay 313 

 314 

The results regarding the CTC patterns showed that supplementation of the freezing extender with 315 

carnitine , prior to cryopreservation, decreased the level of capacitation, in a dose-dependent 316 

manner (Table 3). In fact, the percentage of sperm displaying pattern F increased (P<0.01), while 317 

that of sperm displaying pattern B decreased (P<0.01) in both treated groups compared to the 318 

control (Table 3).  Within treatment groups, the highest concentration was the most effective in 319 

reducing capacitation-like changes, as indicated by higher (P<0.01) percentages of pattern F and 320 

lower (P<0.01) percentages of pattern B sperm. However, no differences were detected in pattern 321 

AR among groups, as shown in Table 3. 322 

 323 

Table 3.  324 

 325 

4.5. Indicators of oxidative stress, ATP content and phospholipids concentration  326 

 327 
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The total antioxidant capacity increased (P<0.01) when sperm were treated with 7.5 mM carnitine 328 

(Table 1). Both carnitine concentrations decreased (P<0.01) ROS levels, as indicated by reduced 329 

DHE values (Table 1). However, supplementation of the semen extender with carnitine did not 330 

affect LPO levels and phospholipids concentrations (Table 1). Interestingly, carnitine 331 

supplementation increased the ATP content of buffalo frozen-thawed sperm in a dose-dependent 332 

manner, as shown in Table 1.  333 

 334 

4.6. Sperm fertilizing ability 335 

 336 

Cleavage, total penetration, normospermic and polyspermic penetration rates were similar among 337 

groups, as shown in Table 4. Likewise, no differences among groups were observed in the 338 

percentage of slow cleaving, i.e. 2 cells-embryos (20.8 ± 5.3, 32.8 ±6.5 and 23.2 ± 4.1, respectively 339 

in the control, 2.5 mM and 7.5 mM carnitine groups) and fast cleaving, i.e. > 4 cells-embryos (79.2 340 

± 5.3, 67.2 ± 6.5 and 76.8 ± 4.1, respectively in the control, 2.5 mM and 7.5 mM carnitine groups). 341 

 342 

Table 4.  343 

 344 

5. Discussion 345 

 346 

The results of this study demonstrated that the supplementation of the freezing extender with 347 

carnitine significantly improved post-thawing sperm motility and decreased capacitation-like 348 

damages in buffalo sperm. It was also observed that the beneficial effects of carnitine on buffalo 349 
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sperm are due to reduced oxidative stress and increased ATP generation, resulting in improved 350 

membrane stability.  351 

The improved post-thawing motility here recorded, when carnitine was supplemented prior to 352 

freezing, is in agreement with previous studies carried out in other species, such as human [40], 353 

bovine [27] and boar [41]. In contrast to these works, however, sperm viability was not improved in 354 

buffalo, remaining high in all groups (> 80%). On the other hand, carnitine did not influence 355 

fertility parameters, such as sperm motility and the incidence of sperm anomalies, in Angora goat 356 

[42]. The improved sperm motility recorded in this study may be due to the antioxidant activity of 357 

carnitine, as indicated by increased TAC and reduced ROS levels in treated sperm. These results 358 

confirm that  buffalo sperm motility is negatively correlated with ROS levels [43].. However, it 359 

seems that carnitine is effective in reducing ROS concentration without affecting lipid peroxidation. 360 

In agreement with this, equine sperm challenged with ROS showed a decreased motility before any 361 

measurable increase in lipid peroxidation [44]. In addition, the dose dependent increase of ATP 362 

content in buffalo sperm treated with carnitine indicates that the enhanced  post-thawing sperm 363 

motility is related to improved mitochondria function and ATP generation. It was previously 364 

suggested that the decline in motility after sperm incubation with ROS may be due to ATP 365 

depletion [45]. Sperm motility is normally ensured by the complex structure of the axoneme 366 

associated with the dense fibers in the mid-piece, surrounded by mitochondria, which are involved 367 

in energy generation through oxidative phosphorylation. It is known that carnitine shuttles acetyl 368 

and acyl groups across the mitochondrial inner membrane playing a buffering role, trapping excess 369 

mitochondrial acetyl-CoA as acetyl-L-carnitine and in turn protecting the activity of pyruvate 370 

dehydrogenase, a key enzyme for mitochondrial respiration [23]. The results of this study showed a 371 

dose dependent effect of carnitine on sperm capacitation status, assessed by both CTC and tyrosine 372 

phosphorylation proteins assays, widely used methods that detect capacitation at different levels. In 373 

fact, although both the concentrations tested significantly decreased the capacitation level, the effect 374 

was greater at the highest concentration (7.5 mM). The fluorescent antibiotic CTC was used to 375 
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assess the destabilization of sperm membrane [36] based on its ability to cross over the cell 376 

membrane, enter intracellular compartments and bind to free calcium ions. This method has been 377 

used to assess sperm capacitation in most domestic species [46; 47], including buffalo [48; 49]. 378 

Moreover, as it is well established that tyrosine phosphorylation of sperm proteins is a key event of 379 

sperm capacitation, several studies have correlated the degree of tyrosine phosphorylation with the 380 

capacitative state of spermatozoa [48; 34]. In this study carnitine supplementation significantly 381 

decreased the incidence of sperm displaying the CTC pattern B (capacitated sperm) and the tyrosine 382 

phosphorylated pattern EA (high capacitation level), while increasing the percentage of both 383 

tyrosine phosphorylated pattern A (low capacitation level) and non-fluorescent (non capacitated) 384 

sperm. Taken together, these results highlight a remarkable reduction of the cryopreservation-385 

induced modifications to sperm membranes, indicating improved sperm quality. This finding is 386 

particularly important because in frozen-thawed  buffalo sperm the proportion of capacitation-like 387 

changes is much higher than in other domestic species [17; 35; 10]. Furthermore, it is known that 388 

premature capacitation reduces the reproductive lifespan of the male gamete [35; 2]. What is 389 

unequivocal is that the pre-treatment with carnitine reduced capacitation-like changes by stabilizing 390 

the sperm membrane, as indicated by the results of CTC staining and HOS test]. In fact, in addition 391 

to the increased percentage of sperm displaying CTC pattern F, indicating membrane stability, the 392 

percentage of HOS positive sperm also significantly increased after carnitine treatment. The HOS 393 

test is a valuable tool to assess the functional integrity of sperm membrane [50], by evaluating the 394 

proportion of biochemically active sperm, after exposure to an hypo-osmotic extracellular solution. 395 

The mechanism by which carnitine stabilizes sperm membrane is not completely elucidated. The 396 

increased TAC and reduced ROS levels recorded in the presence of carnitine suggest that the 397 

beneficial effect is due to its protecting role of plasma membrane against ROS damages. An excess 398 

of ROS in fact, results in membrane damages through the initiation of lipid peroxidation [51]. 399 

However, unexpectedly LPO was not affected by carnitine treatment. It is worth noting that LPO 400 

and membrane damage are relatively independent processes [52] and that membrane stress 401 
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contributes more than LPO to the cryodamages [53]. Therefore, it is not possible to  rule out that 402 

carnitine acts on membrane stability by reducing membrane stress during cryoconservation. 403 

Cryopreservation-induced membrane stress involves embrittlement of plasma membrane during 404 

phospholipid transition from fluid to glassy state. It is well known that membrane stability is 405 

directly associated to the membrane cholesterol:phospholipids ratio [54]. In this study, however, 406 

although the phospholipid concentration tended to decrease, the difference was not significantly 407 

different among groups The beneficial effects on frozen-thawed sperm quality suggested to evaluate 408 

whether carnitine supplementation would also affect the fertilizing ability of buffalo sperm that was 409 

here assessed by heterologous IVF. However, despite the increased sperm quality, the in vitro 410 

fertilization rate was not enhanced: cleavage rate, as well as total penetration and polyspermy were 411 

indeed unaffected. Therefore, the enrichment of the extender with carnitine prior to freezing 412 

improves post-thawing motility and prevents capacitation-like changes, without improving in vitro 413 

fertility. This may be accounted for by the artificial environment of the IVF system, where there is 414 

an abnormally high sperm-oocytes ratio in very small volumes and sperm encounter the oocytes 415 

directly at co-incubation. In addition,  it is not possible to rule out that carnitine-treated sperm that 416 

are less capacitated  may require more time to penetrate the oocytes. However, the percentages of 417 

fast cleaving embryos were also similar among groups,  indirectly suggesting that this is not the 418 

case. It is indeed known that the chronology of development is correlated with first cleavage 419 

division that is in turn associated with sperm penetration time [55]. It seems that the presence of a 420 

capacitating agent such as heparin in the IVF medium counteracts the possible differences in 421 

penetration rate related to the capacitation status. It follows that it would be worth investigating in 422 

future studies  the in vivo fertility after AI that is likely affected to a greater extent by the premature 423 

capacitation occurring after cryopreservation, because of the longer time required for sperm to reach 424 

the site of fertilization.  425 

In conclusion, the supplementation of semen extender with carnitine significantly increased post-426 

thawing motility and membrane integrity, reducing capacitation-like changes of buffalo sperm in a 427 
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dose dependent manner, with the 7.5 mM concentration being the most effective. It was also 428 

demonstrated that carnitine improved buffalo sperm quality by boosting mitochondrial ATP 429 

generation and decreasing ROS production. Nevertheless, in vitro fertilizing capability was not 430 

affected. The results of this study strongly suggest to investigate the effect of carnitine 431 

supplementation of buffalo semen on in vivo fertility in future studies. This assessment is 432 

fundamental to consider the utilization of carnitine-enriched extender for commercial purposes. 433 

 434 
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Table 1. Effect of carnitine on characteristics of buffalo frozen-thawed semen. 

 

Carnitine concentrations (mM) 0 (Control) 2.5 7.5 

 Mean ± SE Mean ± SE Mean ± SE 

Motility (%) 44.4 ± 3.53a 53.1 ± 3.95b 52.5 ± 3.59b 

Viability (%) 80.7 ± 2.41 84.2 ± 2.12 84.6 ± 2.02 

Hos positive (%) 48.44 ± 0.69A 55.19 ± 0.54B 59.63 ± 0.30C 

TAC (mM/L) 1.32 ± 0.02A 1.34 ± 0.01AB 1.37 ± 0.01B 

DHE (µM/µL) 0.22 ± 0.01A 0.18 ± 0.01B 0.14 ± 0.0C 

LPO (nmol/mL MDA) 30.6 ± 0.43 30.4 ± 0.26 30.4 ± 0.26 

ATP (nM x 108 sperm) 4.06 ± 0.06A 5.27 ± 0.14B 8.23 ± 0.37C 

Phospholipid (µg/120 x 106sperm) 94.91 ± 3.64 91.23 ± 5.89 88.12 ± 7.60 

 

A, B Values with different superscripts within columns are different; P< 0.01 

a, b Values with different superscripts within columns are different; P< 0.05 
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Table 2. Effect of carnitine on the percentages of tyrosine phosphorylated proteins patterns of 

buffalo frozen-thawed semen. 

 

Carnitine  

concentrations (mM) 

NF- pattern 

Mean ± SE 

A- pattern 

Mean ± SE 

E- pattern 

Mean ± SE 

EA- pattern 

Mean ± SE 

0 2.8 ± 1.0A 65.8 ± 3.6a 1.1 ± 0.8 30.3 ± 3.8aA 

2.5  5.1 ± 1.9A 75.8 ± 2.7b 0.4 ± 0.3 18.8 ± 2.8bA 

7.5  16.5 ±3.4B 76.3 ± 2.8b 0.0 ± 0.0 7.2± 1.9B 

  

A, B Values with different superscripts within columns are different; P< 0.01 

a, b Values with different superscripts within columns are different; P< 0.05 
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Table 3. Effect of carnitine on the percentages of F-pattern, B-pattern and AR-pattern in 

buffalo frozen-thawed semen. 

Carnitine  

concentrations (mM) 

F- pattern 

Mean ± SE 

B- pattern 

Mean ± SE 

AR- pattern 

Mean ± SE 

0 31.3 ± 2.1A 63.8 ± 1.8A 4.9 ± 0.9 

2.5  49.4 ± 2.2B 46.8 ± 2.2B 3.8 ± 0.6 

7.5  60.3 ±3.6C 37.2 ± 1.8C 2.6 ± 1.9 

  

A, B, C Values with different superscripts within columns are different; P< 0.01 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 4. Effect of carnitine on the percentages of cleavage, total penetration, normospermic 

penetration and polyspermyafter heterologous IVF. 

Carnitine  

concentrations (mM) 

N. Cleavage Total 

penetration 

Normospermic 

penetration 

Polyspermy 

  n (%) n (%) n (%) n (%) 

0 429 207(48.4) 239 (55.1) 234 (53.6) 3 (0.9) 

2.5 430 228(51.3) 253 (56.9) 252 (56.6) 1 (0.3) 

7.5 403 198(45.2) 233 (53.5) 218 (50.4) 2 (0.6) 
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Highlights  

Carnitine supplementation increases post-thawing motility in buffalo sperm  

Carnitine supplementation reduced the cryocapacitation damages of buffalo sperm 

            Carnitine increases ATP generation modulating ROS production in buffalo sperm




